Python多cpu并行编程是怎样,要点有什么

Admin 2022-08-31 群英技术资讯 347 次浏览

这篇文章给大家分享的是“Python多cpu并行编程是怎样,要点有什么”,对大家学习和理解有一定的参考价值和帮助,有这方面学习需要的朋友,接下来就跟随小编一起学习一下吧。



多cpu并行编程
  • python多线程只能算并发,因为它智能使用一个cpu内核
  • python下pp包支持多cpu并行计算

安装

pip install pp

使用

#-*- coding: UTF-8 -*-
import math, sys, time
import pp
def IsPrime(n):
    """返回n是否是素数"""
    if not isinstance(n, int):
        raise TypeError("argument passed to is_prime is not of 'int' type")
    if n < 2:
        return False
    if n == 2:
        return True
    max = int(math.ceil(math.sqrt(n)))
    i = 2
    while i <= max:
        if n % i == 0:
            return False
        i += 1
    return True
def SumPrimes(n):
    for i in xrange(15):
        sum([x for x in xrange(2,n) if IsPrime(x)])
    """计算从2-n之间的所有素数之和"""
    return sum([x for x in xrange(2,n) if IsPrime(x)])
inputs = (100000, 100100, 100200, 100300, 100400, 100500, 100600, 100700)
# start_time = time.time()
# for input in inputs:
#     print SumPrimes(input)
# print '单线程执行,总耗时', time.time() - start_time, 's'
# # tuple of all parallel python servers to connect with
ppservers = ()
#ppservers = ("10.0.0.1",)
if len(sys.argv) > 1:
    ncpus = int(sys.argv[1])
    # Creates jobserver with ncpus workers
    job_server = pp.Server(ncpus, ppservers=ppservers)
else:
    # Creates jobserver with automatically detected number of workers
    job_server = pp.Server(ppservers=ppservers)
print "pp 可以用的工作核心线程数", job_server.get_ncpus(), "workers"
start_time = time.time()
jobs = [(input, job_server.submit(SumPrimes,(input,), (IsPrime,), ("math",))) for input in inputs]#submit提交任务
for input, job in jobs:
    print "Sum of primes below", input, "is", job()# job()获取方法执行结果
print "多线程下执行耗时: ", time.time() - start_time, "s"
job_server.print_stats()#输出执行信息

执行结果

pp 可以用的工作核心线程数 4 workers
Sum of primes below 100000 is 454396537
Sum of primes below 100100 is 454996777
Sum of primes below 100200 is 455898156
Sum of primes below 100300 is 456700218
Sum of primes below 100400 is 457603451
Sum of primes below 100500 is 458407033
Sum of primes below 100600 is 459412387
Sum of primes below 100700 is 460217613
多线程下执行耗时:  15.4971420765 s
Job execution statistics:
 job count | % of all jobs | job time sum | time per job | job server
         8 |        100.00 |      60.9828 |     7.622844 | local
Time elapsed since server creation 15.4972219467
0 active tasks, 4 cores

submit 函数定义

def submit(self, func, args=(), depfuncs=(), modules=(),
        callback=None, callbackargs=(), group='default', globals=None):
    """Submits function to the execution queue
 
        func - function to be executed  执行的方法
        args - tuple with arguments of the 'func' 方法传入的参数,使用元组
        depfuncs - tuple with functions which might be called from 'func' 传入自己写的方法 ,元组
        modules - tuple with module names to import  传入 模块
        callback - callback function which will be called with argument
                list equal to callbackargs+(result,)
                as soon as calculation is done
        callbackargs - additional arguments for callback function
        group - job group, is used when wait(group) is called to wait for
        jobs in a given group to finish
        globals - dictionary from which all modules, functions and classes
        will be imported, for instance: globals=globals()
    """

多核cpu并行计算

  • 多进程实现并行计算的简单示例
  • 这里我们开两个进程,计算任务也简洁明了
# 多进程
import multiprocessing as mp
def job(q, a, b):
    print('aaa')
    q.put(a**1000+b*1000)  # 把计算结果放到队列
# 多进程
if __name__ == '__main__':
    q = mp.Queue()  # 一个队列
    p1 = mp.Process(target=job, args=(q, 100, 200))
    p2 = mp.Process(target=job, args=(q, 100, 200))
    p1.start()
    p1.join()
    # print(p1.ident)
    p2.start()
    p2.join()
    res = q.get() + q.get()  # 读取队列,这里面保存了两次计算得到的结果
    print('result:', res)

关于“Python多cpu并行编程是怎样,要点有什么”就介绍到这了,如果大家觉得不错可以参考了解看看,如果想要了解更多,欢迎关注群英网络,小编每天都会为大家更新不同的知识。 群英智防CDN,智能加速解决方案
标签: python多cpu并行

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服