pandas统计行缺失值的方法是什么,怎样做

Admin 2022-08-30 群英技术资讯 406 次浏览

关于“pandas统计行缺失值的方法是什么,怎样做”的知识有一些人不是很理解,对此小编给大家总结了相关内容,具有一定的参考借鉴价值,而且易于学习与理解,希望能对大家有所帮助,有这个方面学习需要的朋友就继续往下看吧。


统计某一列或某一行的缺失值数目

1.使用isnull()

import pandas as pd

# 首先导入数据
df = pd.read_csv('123.csv' , encoding='gbk')

# 计算data每一行有多少个缺失值的值,即按行统计缺失值
rows_null = df.isnull().sum(axis=1) 

# 下面则是按列统计缺失值
col_null = df.isnull().sum(axis=0)

#统计整个df的缺失值
all_null = df.isnull().sum().sum()

# 统计某一列的缺失值
idx_null = df['列名'].isnull().sum(axis=0)

2.使用count

import pandas as pd

# 首先导入数据
df = pd.read_csv('123.csv' , encoding='gbk')

# 计算data每一行有多少个非空的值,即按行统计非空值
rows_not_null = df.count(axis=1) 

# 下面则是按列统计非空值
cols_not_null = df.count(axis=0)
cols_null = df.shape[1] - cols_not_null

# 统计某一列的非空值
col_not_null = df['列名'].count(axis=0)

利用pandas处理缺失值

处理缺失值

def missing_values(dataframe):
    missing_ratio = (dataframe.isnull().sum() / len(dataframe))*100
    missing_ratio = missing_ratio.drop(missing_ratio[missing_ratio == 0].index).sort_values(ascending=False)
    missing_count = dataframe.isnull().sum()
    missing_count = missing_count.drop(missing_count[missing_count == 0].index).sort_values(ascending=False)
    info = pd.DataFrame({'Missing Ratio': missing_ratio, 'Missing Count': missing_count})
    return info

这篇关于“pandas统计行缺失值的方法是什么,怎样做”的文章就介绍到这了,更多相关的内容,欢迎关注群英网络,小编将为大家输出更多高质量的实用文章! 群英智防CDN,智能加速解决方案

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服