Python缺失值的判断、过滤、填充、删除怎么做
Admin 2022-08-30 群英技术资讯 392 次浏览
在通过Pandas做数据分析时,数据中往往会因为一些原因而出现缺失值NaN (Nota number)o比如前文中的例子,当两个DataFrame对象进行简单运算时,无法匹配的位置会出现缺失值NaN或者None.
isnull ( )和notnull ( )方法都可以用于判断数据是否为缺失值( NaN或者None).如果是缺失值,则isnull()返回值为True, notnull()返回值为False.
df2 Out[170]: A B C D a 2.0 4.0 6.0 NaN b 6.0 8.0 10.0 NaN c 10.0 12.0 14.0 NaN df2.isnull() Out[171]: A B C D a False False False True b False False False True c False False False True df2.notnull() Out[172]: A B C D a True True True False b True True True False c True True True False
有时遇到包含缺失值的数据处理起来比较简单,只需要保留有数值的数据即可:
df2 Out[182]: A B C D a 2.0 4.0 6.0 NaN b 6.0 8.0 10.0 NaN c 10.0 12.0 14.0 1.0 #把D列中的缺失值过滤掉 df2.D[df2.D.notnull()] Out[183]: c 1.0 Name: D, dtype: float64
有时处理数据时我们会想将缺失值用实际的值做替代,Pandas包里也有函数可以调 用:DataFrame.fillna(value=None, method = None, axis = None, inplace=False, limit=None)
参数value是在缺失值处填充的值,可以是数值数字,也可以是字符串;method 是填充的方式,默认为None,也可以取值为ffin、pad、bfill或backfill,其中ffill/pad是用行或列方向上的上一个观测值来填充缺失值,bfill/backfin是用行或列方向上的下一个观测 值来填充;axis与method配合使用,指定行(axis=l)或列(axis=0)的方向;limit=None 时,会填充连续的缺失值,如果指定数值的话,比如limit=2,只会依次填充连续NaN值的 指定数字个数(比如2个);若inplace=False则不会变更原DataFrame,若inplace=True, 则会改变原DataFrame。
import pandas as pd import numpy as np h2h2df=pd.DataFrame(np.arange(1,21).reshape(5,4),index=list('abcde'),columns=list("ABCD")) h2df.loc['c','A']=np.nan h2df.loc['b':'d','C']=np.nan h2df Out[192]: A B C D a 1.0 2 3.0 4 b 5.0 6 NaN 8 c NaN 10 NaN 12 d 13.0 14 NaN 16 e 17.0 18 19.0 20 h2df.fillna(0) Out[193]: A B C D a 1.0 2 3.0 4 b 5.0 6 0.0 8 c 0.0 10 0.0 12 d 13.0 14 0.0 16 e 17.0 18 19.0 20 h2df.fillna(method='ffill') Out[194]: A B C D a 1.0 2 3.0 4 b 5.0 6 3.0 8 c 5.0 10 3.0 12 d 13.0 14 3.0 16 e 17.0 18 19.0 20 h2df.fillna(method='pad') Out[197]: A B C D a 1.0 2 3.0 4 b 5.0 6 3.0 8 c 5.0 10 3.0 12 d 13.0 14 3.0 16 e 17.0 18 19.0 20 h2df.fillna(method='backfill',axis=1) Out[196]: A B C D a 1.0 2.0 3.0 4.0 b 5.0 6.0 8.0 8.0 c 10.0 10.0 12.0 12.0 d 13.0 14.0 16.0 16.0 e 17.0 18.0 19.0 20.0 h2df.fillna(method='ffill',limit=2) Out[198]: A B C D a 1.0 2 3.0 4 b 5.0 6 3.0 8 c 5.0 10 3.0 12 d 13.0 14 NaN 16 e 17.0 18 19.0 20
Pandas提供对包含缺失值的数据集进行行列的删除操作:
DataFrame.dropna(axis=0, how=‘any’, thresh=None)
axis = 0指删除包含缺失值的行,axis = 1指删除包含缺失值的列,默认为0; how=any表示只要有一个缺失值就删除该行(列),how = all表示只有当所有的元素都为缺失值时才删除该行(列),how默认取值为any;thresh默认为None。当thresh=5时表示只有当某行(列)缺失值的数量大于或者等于5时删除该 行(列)。
df Out[199]: A B C D a 1.0 2 3.0 4 b 5.0 6 NaN 8 c NaN 10 NaN 12 d 13.0 14 NaN 16 e 17.0 18 19.0 20 df.dropna(axis=0) Out[200]: A B C D a 1.0 2 3.0 4 e 17.0 18 19.0 20 df.dropna(axis=1) Out[201]: B D a 2 4 b 6 8 c 10 12 d 14 16 e 18 20
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了Django中的JWT身份验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
多径效应(multipath effect):指电磁波经不同路径传播后,各分量场到达接收端时间不同,按各自相位相互叠加而造成干扰,使得原来的信号失真,或者产生错误。比如电磁波沿不同的两条路径传播,而两条路径的长度正好相差半个波长,那么两路信号到达终点时正好相互抵消了
pyc是一种二进制文件,是由py文件经过编译后,生成的文件,下面这篇文章主要给大家介绍了关于python中py文件与pyc文件相互转换的相关资料,需要的朋友可以参考下
线性回归 (Linear Regression) 是利用回归分析来确定两种或两种以上变量间相互依赖的定量关系.
判断某一年是否闰年的条件很简单,该年份必须满足它是4的倍数且不是100的倍数;或者年份是400的倍数。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008