Python中对图像补全的思路及实现是怎样的

Admin 2022-08-25 群英技术资讯 662 次浏览

这篇文章给大家分享的是Python中对图像补全的思路及实现是怎样的。小编觉得挺实用的,因此分享给大家做个参考,文中的介绍得很详细,而要易于理解和学习,有需要的朋友可以参考,接下来就跟随小编一起了解看看吧。

题目

编写一个程序,按照输入的宽高,将测试图像分割成多个补丁块,超出图像边界的部分用黑色像素补齐

思路

按照输入的宽高,先判断原始图像与其取模是否为零,判断需不需要进行图像填充

如果需要进行图像填充,先计算出新图像的宽和高((整除后+1)* 指定宽高),然后新建一张全黑图像,将原图像默认为左上角位置粘贴进去

最后进行图像裁剪,使用两层for循环,步长设定为补丁的宽高,使用crop函数,指定补丁图片的左、上、右、下坐标

代码 

import numpy as np
from PIL import Image
# 判断是否需要进行图像填充
def judge(img, wi, he):
    width, height = img.size
    # 默认新图像尺寸初始化为原图像
    new_width, new_height = img.size
    if width % wi != 0:
        new_width = (width//wi + 1) * wi
    if height % he != 0:
        new_height = (height//he + 1) * he
    # 新建一张新尺寸的全黑图像
    new_image = Image.new('RGB', (new_width, new_height), (0, 0, 0))
    # 将原图像粘贴在new_image上,默认为左上角坐标对应
    new_image.paste(img, box=None, mask=None)
    new_image.show()
    return new_image
# 按照指定尺寸进行图片裁剪
def crop_image(image, patch_w, patch_h):
    width, height = image.size
    # 补丁计数
    cnt = 0
    for w in range(0, width, patch_w):
        for h in range(0, height, patch_h):
            cnt += 1
            # 指定原图片的左、上、右、下
            img = image.crop((w, h, w+patch_w, h+patch_h))
            img.save("dog-%d.jpg" % cnt)
    print("图片补丁裁剪结束,共有{}张补丁".format(cnt))
def main():
    image_path = "dog.jpg"
    img = Image.open(image_path)
    # 查看图像形状
    print("原始图像形状{}".format(np.array(img).shape))
    # 输入指定的补丁宽高
    print("输入补丁宽高:")
    wi, he = map(int, input().split(" "))
    # 进行图像填充
    new_image = judge(img, wi, he)
    # 图片补丁裁剪
    crop_image(new_image, wi, he)
if __name__ == '__main__':
    main()

效果展示

原图像使用了黑色像素填充

图像裁剪,分割成小补丁

图像分割方法总结

图像分割是一种常用的图像处理方法,可分为传统方法和深度学习的方法。深度学习的方法比如:mask rcnn这类实例分割模型,效果比传统的图像分割方法要好的多,所以目前图像分割领域都是用深度学习来做的。但是深度学习也有它的缺点,模型大、推理速度慢、可解释性差、训练数据要求高等。本文在这里仅讨论传统的图像分割算法,可供学习和使用。

1、阈值分割

最简单的图像分割算法,只直接按照像素值进行分割,虽然简单,但是在一些像素差别较大的场景中表现不错,是一种简单而且稳定的算法。

def thresholdSegment(filename):
    gray = cv2.imread(filename, cv2.IMREAD_GRAYSCALE)
    ret1, th1 = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
    th2 = cv2.adaptiveThreshold(
        gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
    th3 = cv2.adaptiveThreshold(
        gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
    ret2, th4 = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
    images = [th1, th2, th4, th3]
    imgaesTitle = ['THRESH_BINARY', 'THRESH_MEAN',
                   'THRESH_OTSU', 'THRESH_GAUSSIAN']
    plt.figure()
    for i in range(4):
        plt.subplot(2, 2, i+1)
        plt.imshow(images[i], 'gray')
        plt.title(imgaesTitle[i])
        cv2.imwrite(imgaesTitle[i]+'.jpg', images[i])
    plt.show()
    cv2.waitKey(0)
    return images

2、边界分割(边缘检测)

def edgeSegmentation(filename):
    # 读取图片
    img = cv2.imread(filename)
    # 灰度化
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # 高斯模糊处理:去噪(效果最好)
    blur = cv2.GaussianBlur(gray, (9, 9), 0)
    # Sobel计算XY方向梯度
    gradX = cv2.Sobel(gray, ddepth=cv2.CV_32F, dx=1, dy=0)
    gradY = cv2.Sobel(gray, ddepth=cv2.CV_32F, dx=0, dy=1)
    # 计算梯度差
    gradient = cv2.subtract(gradX, gradY)
    # 绝对值
    gradient = cv2.convertScaleAbs(gradient)
    # 高斯模糊处理:去噪(效果最好)
    blured = cv2.GaussianBlur(gradient, (9, 9), 0)
    # 二值化
    _, dst = cv2.threshold(blured, 90, 255, cv2.THRESH_BINARY)
    # 滑动窗口
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (107, 76))
    # 形态学处理:形态闭处理(腐蚀)
    closed = cv2.morphologyEx(dst, cv2.MORPH_CLOSE, kernel)
    # 腐蚀与膨胀迭代
    closed = cv2.erode(closed, None, iterations=4)
    closed = cv2.dilate(closed, None, iterations=4)
    # 获取轮廓
    _, cnts, _ = cv2.findContours(
        closed.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    c = sorted(cnts, key=cv2.contourArea, reverse=True)[0]
    rect = cv2.minAreaRect(c)
    box = np.int0(cv2.boxPoints(rect))
    draw_img = cv2.drawContours(img.copy(), [box], -1, (0, 0, 255), 3)
    #cv2.imshow("Box", draw_img)
    #cv2.imwrite('./test/monkey.png', draw_img)
    images = [blured, dst, closed, draw_img]
    imgaesTitle = ['blured', 'dst', 'closed', 'draw_img']
    plt.figure()
    for i in range(4):
        plt.subplot(2, 2, i+1)
        plt.imshow(images[i], 'gray')
        plt.title(imgaesTitle[i])
        #cv2.imwrite(imgaesTitle[i]+'.jpg', images[i])
    plt.show()
    cv2.waitKey(0)

3、区域分割(区域生成)

def regionSegmentation(filename):
    # 读取图片
    img = cv2.imread(filename)
    # 图片宽度
    img_x = img.shape[1]
    # 图片高度
    img_y = img.shape[0]
    # 分割的矩形区域
    rect = (0, 0, img_x-1, img_y-1)
    # 背景模式,必须为1行,13x5列
    bgModel = np.zeros((1, 65), np.float64)
    # 前景模式,必须为1行,13x5列
    fgModel = np.zeros((1, 65), np.float64)
    # 图像掩模,取值有0,1,2,3
    mask = np.zeros(img.shape[:2], np.uint8)
    # grabCut处理,GC_INIT_WITH_RECT模式
    cv2.grabCut(img, mask, rect, bgModel, fgModel, 4, cv2.GC_INIT_WITH_RECT)
    # grabCut处理,GC_INIT_WITH_MASK模式
    #cv2.grabCut(img, mask, rect, bgModel, fgModel, 4, cv2.GC_INIT_WITH_MASK)
    # 将背景0,2设成0,其余设成1
    mask2 = np.where((mask == 2) | (mask == 0), 0, 1).astype('uint8')
    # 重新计算图像着色,对应元素相乘
    img = img*mask2[:, :, np.newaxis]
    cv2.imshow("Result", img)
    cv2.waitKey(0)

4、SVM分割(支持向量机)

def svmSegment(pic):
    img = Image.open(pic)
    img.show()  # 显示原始图像
    img_arr = np.asarray(img, np.float64)
  #选取图像上的关键点RGB值(10个)
    lake_RGB = np.array(
    [[147, 168, 125], [151, 173, 124], [143, 159, 112], [150, 168, 126], [146, 165, 120],
     [145, 161, 116], [150, 171, 130], [146, 112, 137], [149, 169, 120], [144, 160, 111]])
# 选取待分割目标上的关键点RGB值(10个)
    duck_RGB = np.array(
    [[81, 76, 82], [212, 202, 193], [177, 159, 157], [129, 112, 105], [167, 147, 136],
     [237, 207, 145], [226, 207, 192], [95, 81, 68], [198, 216, 218], [197, 180, 128]] )
    RGB_arr = np.concatenate((lake_RGB, duck_RGB), axis=0)  # 按列拼接
    # lake 用 0标记,duck用1标记
    label = np.append(np.zeros(lake_RGB.shape[0]), np.ones(duck_RGB.shape[0]))
    # 原本 img_arr 形状为(m,n,k),现在转化为(m*n,k)
    img_reshape = img_arr.reshape(
    [img_arr.shape[0]*img_arr.shape[1], img_arr.shape[2]])
    svc = SVC(kernel='poly', degree=3)  # 使用多项式核,次数为3
    svc.fit(RGB_arr, label)  # SVM 训练样本
    predict = svc.predict(img_reshape)  # 预测测试点
    lake_bool = predict == 0.  
    lake_bool = lake_bool[:, np.newaxis]  # 增加一列(一维变二维)
    lake_bool_3col = np.concatenate(
    (lake_bool, lake_bool, lake_bool), axis=1)  # 变为三列
    lake_bool_3d = lake_bool_3col.reshape(
    (img_arr.shape[0], img_arr.shape[1], img_arr.shape[2]))  # 变回三维数组(逻辑数组)
    img_arr[lake_bool_3d] = 255.  
    img_split = Image.fromarray(img_arr.astype('uint8'))  # 数组转image
    img_split.show()  # 显示分割之后的图像
    img_split.save('split_duck.jpg')  # 保存

5、分水岭分割

def watershedSegment(filename):
    img = cv2.imread(filename)
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    ret, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
    # noise removal
    kernel = np.ones((3,3),np.uint8)
    opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel, iterations = 2)
    # sure background area
    sure_bg = cv2.dilate(opening,kernel,iterations=3)
    # Finding sure foreground area
    dist_transform = cv2.distanceTransform(opening,cv2.DIST_L2,5)
    ret, sure_fg = cv2.threshold(dist_transform,0.7*dist_transform.max(),255,0)
    # Finding unknown region
    sure_fg = np.uint8(sure_fg)
    unknown = cv2.subtract(sure_bg,sure_fg) 
    # Marker labelling
    ret, markers = cv2.connectedComponents(sure_fg)
    # Add one to all labels so that sure background is not 0, but 1
    markers = markers+1
    # Now, mark the region of unknown with zero
    markers[unknown==255]=0 
    markers = cv2.watershed(img,markers)
    img[markers == -1] = [255,0,0]

6、Kmeans分割

def kmeansSegment(filename,k):
    f = open(filename,'rb') #二进制打开
    data = []
    img = Image.open(f) #以列表形式返回图片像素值
    m,n = img.size #图片大小
    for i in range(m):
        for j in range(n):  #将每个像素点RGB颜色处理到0-1范围内并存放data
            x,y,z = img.getpixel((i,j))
            data.append([x/256.0,y/256.0,z/256.0])
    f.close()
    img_data=np.mat(data)
    row=m
    col=n
    label = KMeans(n_clusters=k).fit_predict(img_data)  #聚类中心的个数为3
    label = label.reshape([row,col])    #聚类获得每个像素所属的类别
    pic_new = Image.new("L",(row,col))  #创建一张新的灰度图保存聚类后的结果
    for i in range(row):    #根据所属类别向图片中添加灰度值
        for j in range(col):
            pic_new.putpixel((i,j),int(256/(label[i][j]+1)))
    pic_new.save('keans_'+str(k)+'.jpg')
    plt.imshow(pic_new)
    plt.show()

以上就是关于“Python中对图像补全的思路及实现是怎样的”的相关知识,感谢各位的阅读,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注群英网络,小编每天都会为大家更新不同的知识。
群英智防CDN,智能加速解决方案
标签: Python图像补全

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服