Pandas数据分析中的核心操作包括哪些
Admin 2022-08-24 群英技术资讯 445 次浏览
Pandas 是基于 NumPy 构建的库,在数据处理方面可以把它理解为 NumPy 加强版,同时 Pandas 也是一项开源项目。它基于 Cython,因此读取与处理数据非常快,并且还能轻松处理浮点数据中的缺失数据(表示为 NaN)以及非浮点数据。
本文中,基本数据集操作主要介绍了 CSV 与 Excel 的读写方法,基本数据处理主要介绍了缺失值及特征抽取,最后的 DataFrame 操作则主要介绍了函数和排序等方法。
1.读取 CSV 格式的数据集
pd.DataFrame.from_csv(“csv_file”)
或者:
pd.read_csv(“csv_file”)
2.读取 Excel 数据集
pd.read_excel("excel_file")
3.将 DataFrame 直接写入 CSV 文件
如下采用逗号作为分隔符,且不带索引:
df.to_csv("data.csv", sep=",", index=False)
4.基本的数据集特征信息
df.info()
5.基本的数据集统计信息
print(df.describe())
6.Print data frame in a table
将 DataFrame 输出到一张表:
print(tabulate(print_table, headers=headers))
当「print_table」是一个列表,其中列表元素还是新的列表,「headers」为表头字符串组成的列表。
7.列出所有列的名字
df.columns
8.删除缺失数据
df.dropna(axis=0, how='any')
返回一个 DataFrame,其中删除了包含任何 NaN 值的给定轴,选择 how=「all」会删除所有元素都是 NaN 的给定轴。
9.替换缺失数据
df.replace(to_replace=None, value=None)
使用 value 值代替 DataFrame 中的 to_replace 值,其中 value 和 to_replace 都需要我们赋予不同的值。
10.检查空值 NaN
pd.isnull(object)
检查缺失值,即数值数组中的 NaN 和目标数组中的 None/NaN。
11.删除特征
df.drop('feature_variable_name', axis=1)
axis 选择 0 表示行,选择表示列。
12.将目标类型转换为浮点型
pd.to_numeric(df["feature_name"], errors='coerce')
将目标类型转化为数值从而进一步执行计算,在这个案例中为字符串。
13.将 DataFrame 转换为 NumPy 数组
df.as_matrix()
14.取 DataFrame 的前面「n」行
df.head(n)
15.通过特征名取数据
df.loc[feature_name]
16.对 DataFrame 使用函数
该函数将令 DataFrame 中「height」行的所有值乘上 2:
df["height"].apply(*lambda* height: 2 * height)
或:
def multiply(x): return x * 2df["height"].apply(multiply)
17.重命名行
下面代码会重命名 DataFrame 的第三行为「size」:
df.rename(columns = {<!--{C}%3C!%2D%2D%20%2D%2D%3E-->df.columns[2]:'size'}, inplace=True)
18.取某一行的唯一实体
下面代码将取「name」行的唯一实体:
df["name"].unique()
19.访问子 DataFrame
以下代码将从 DataFrame 中抽取选定了的行「name」和「size」:
new_df = df[["name", "size"]]
20.总结数据信息
# Sum of values in a data frame df.sum() # Lowest value of a data frame df.min() # Highest value df.max() # Index of the lowest value df.idxmin() # Index of the highest value df.idxmax() # Statistical summary of the data frame, with quartiles, median, etc. df.describe() # Average values df.mean() # Median values df.median() # Correlation between columns df.corr() # To get these values for only one column, just select it like this# df["size"].median()
21.给数据排序
df.sort_values(ascending = False)
22.布尔型索引
以下代码将过滤名为「size」的行,并仅显示值等于 5 的行:
df[df["size"] == 5]
23.选定特定的值
以下代码将选定「size」列、第一行的值:
df.loc([0], ['size'])
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了pytorch部署到jupyter中,在这里需要注意我再输入的时候出现了一些无法定位的提示,但是我的电脑没有影响使用jupyter,还是可以使用jupyter并且可以import torch,本文给大家讲解的非常详细,需要的朋友参考下吧
为什么要用numpy? Python中提供了list容器,可以当作数组使用。但列表中的元素可以是任何对象,因此列表中保存的是对象的指针,这样一来,为了保存一个简单的列表[1,2,3]。就需要三个指针和三个整数对象。对于数值运算来说,这种结构显然不够高效。
本篇文章给大家带来了关于Python的相关知识,其中主要介绍了Python 列表的索引取值,本节重点掌握多次索引取值的语法:列表[索引][索引],结合示例代码给大家介绍的非常详细,下面一起来看一下,希望对大家有帮助。
批量文件整理一直是日常工作中令人头疼的事,使用 Python 进行大批量文件整理,可以大大提升工作效率。本文主要介绍了利用Python实现文件的重命名和删除,感兴趣的小伙伴可以关注一下
本文和你一起探索Python中的lambda函数,让你以最短的时间明白这个函数的原理。也可以利用碎片化的时间巩固这个函数,让你在处理工作过程中更高效
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008