Python中h5py模块用作什么的,如何使用

Admin 2022-08-24 群英技术资讯 295 次浏览

今天这篇我们来学习和了解“Python中h5py模块用作什么的,如何使用”,下文的讲解详细,步骤过程清晰,对大家进一步学习和理解“Python中h5py模块用作什么的,如何使用”有一定的帮助。有这方面学习需要的朋友就继续往下看吧!

 


一、h5py模块介绍

本文只是简单的对h5py库的基本创建文件,数据集和读取数据的方式进行介绍!如果读者需要进一步详细的学习h5py的更多知识,请参考h5py的官方文档。

h5py简单介绍

一个HDF5文件是一种存放两类对象的容器:dataset和group. Dataset是类似于数组的数据集,而group是类似文件夹一样的容器,它好比python中的字典,有键(key)和值(value),存放dataset和其他group。在使用h5py的时候需要牢记一句话:groups类比字典dataset类比Numpy中的数组

HDF5的dataset虽然与Numpy的数组在接口上很相近,但是支持更多对外透明的存储特征,如:数据压缩误差检测分块传输

二、h5py模块使用

h5py创建的文件后缀名为:.hdf5

1、h5py接口简单介绍

h5py模块的使用主要分成两步走:

  • 1)创建.hdf5类型文件句柄(创建一个对象) # 读取文件把“w”改成“r”

f=h5py.File("myh5py.hdf5","w")

  • 2)创建数据(dataset)或组(group)

创建数据(dataset):

f.create_dataset(self, name, shape=None, dtype=None, data=None, **kwds)

创建组(group):

create_group(self, name, track_order=False)

2、h5py的使用样例

  • 创建一个h5py文件
import h5py
#要是读取文件的话,就把w换成r
f=h5py.File("myh5py.hdf5","w")

在当前目录下会生成一个myh5py.hdf5文件

  • 创建dataset数据集
import h5py
f=h5py.File("myh5py.hdf5","w")
#deset1是数据集的name,(20,)代表数据集的shape,i代表的是数据集的元素类型
d1=f.create_dataset("dset1", (20,), 'i')
for key in f.keys():
    print(key)
    print(f[key].name)
    print(f[key].shape)
    print(f[key].value)
输出:
dset1
/dset1
(20,)
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

这里我们仅仅创建了一个存放20个整型元素的数据集,并没有赋值,默认全是0,如何赋值呢,看下面的代码。

import h5py
import numpy as np
f=h5py.File("myh5py.hdf5","w")
d1=f.create_dataset("dset1",(20,),'i')
#赋值
d1[...]=np.arange(20)
#或者我们可以直接按照下面的方式创建数据集并赋值
f["dset2"]=np.arange(15)

for key in f.keys():
    print(f[key].name)
    print(f[key].value)

输出:
/dset1
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19]
/dset2
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14]

如果我们有现成的numpy数组,那么可以在创建数据集的时候就赋值,这个时候就不必指定数据的类型和形状了,只需要把数组名传给参数data

import h5py
import numpy as np
f=h5py.File("myh5py.hdf5","w")
a=np.arange(20)
d1=f.create_dataset("dset1",data=a)
for key in f.keys():
    print(f[key].name)
    print(f[key].value)

输出:
/dset1
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19]

现在把这几种创建的方式混合写下。看下面的代码

import h5py
import numpy as np
f=h5py.File("myh5py.hdf5","w")
#分别创建dset1,dset2,dset3这三个数据集
a=np.arange(20)
d1=f.create_dataset("dset1",data=a)
d2=f.create_dataset("dset2",(3,4),'i')
d2[...]=np.arange(12).reshape((3,4))
f["dset3"]=np.arange(15)
for key in f.keys():
    print(f[key].name)
    print(f[key].value)
输出:
/dset1
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19]
/dset2
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]
/dset3
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14]
3. 创建group组
import h5py
import numpy as np
f=h5py.File("myh5py.hdf5","w")
#创建一个名字为bar的组
g1=f.create_group("bar")
#在bar这个组里面分别创建name为dset1,dset2的数据集并赋值。
g1["dset1"]=np.arange(10)
g1["dset2"]=np.arange(12).reshape((3,4))
for key in g1.keys():
    print(g1[key].name)
    print(g1[key].value)
输出:
/bar/dset1
[0 1 2 3 4 5 6 7 8 9]
/bar/dset2
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]

注意观察数据集dset1和dset2的名字是不是有点和前面的不一样,如果是直接创建的数据集,不在任何组里面,那么它的名字就是/+名字,现在这两个数据集都在bar这个group(组)里面,名字就变成了/bar+/名字,是不是有点文件夹的感觉!继续看下面的代码,你会对group和dataset的关系进一步了解。

import h5py
import numpy as np
f=h5py.File("myh5py.hdf5","w")
#创建组bar1,组bar2,数据集dset
g1=f.create_group("bar1")
g2=f.create_group("bar2")
d=f.create_dataset("dset",data=np.arange(10))
#在bar1组里面创建一个组car1和一个数据集dset1。
c1=g1.create_group("car1")
d1=g1.create_dataset("dset1",data=np.arange(10))
#在bar2组里面创建一个组car2和一个数据集dset2
c2=g2.create_group("car2")
d2=g2.create_dataset("dset2",data=np.arange(10))
#根目录下的组和数据集
print(".............")
for key in f.keys():
    print(f[key].name)
#bar1这个组下面的组和数据集
print(".............")
for key in g1.keys():
    print(g1[key].name)

#bar2这个组下面的组和数据集
print(".............")
for key in g2.keys():
    print(g2[key].name)
#顺便看下car1组和car2组下面都有什么,估计你都猜到了为空。
print(".............")
print(c1.keys())
print(c2.keys())
输出:
.............
/bar1
/bar2
/dset
.............
/bar1/car1
/bar1/dset1
.............
/bar2/car2
/bar2/dset2
.............
[]
[]

Reference:

1、blog.csdn.net/csdn1569884…

2、blog.csdn.net/yudf2010/ar…


关于“Python中h5py模块用作什么的,如何使用”就介绍到这了,如果大家觉得不错可以参考了解看看,如果想要了解更多,欢迎关注群英网络,小编每天都会为大家更新不同的知识。 群英智防CDN,智能加速解决方案
标签: h5py模块

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服