python中用什么方法实现手势识别,过程是什么
Admin 2022-08-18 群英技术资讯 335 次浏览
这部分没啥说的,就是获取摄像头。
cap = cv2.VideoCapture("C:/Users/lenovo/Videos/1.mp4")#读取文件 #cap = cv2.VideoCapture(0)#读取摄像头 while(True): ret, frame = cap.read() key = cv2.waitKey(50) & 0xFF if key == ord('q'): break cap.release() cv2.destroyAllWindows()
这里使用的是椭圆肤色检测模型
在RGB空间里人脸的肤色受亮度影响相当大,所以肤色点很难从非肤色点中分离出来,也就是说在此空间经过处理后,肤色点是离散的点,中间嵌有很多非肤色,这为肤色区域标定(人脸标定、眼睛等)带来了难题。如果把RGB转为YCrCb空间的话,可以忽略Y(亮度)的影响,因为该空间受亮度影响很小,肤色会产生很好的类聚。这样就把三维的空间将为二维的CrCb,肤色点会形成一定得形状,如:人脸的话会看到一个人脸的区域,手臂的话会看到一条手臂的形态。
def A(img): YCrCb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) #转换至YCrCb空间 (y,cr,cb) = cv2.split(YCrCb) #拆分出Y,Cr,Cb值 cr1 = cv2.GaussianBlur(cr, (5,5), 0) _, skin = cv2.threshold(cr1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) #Ostu处理 res = cv2.bitwise_and(img,img, mask = skin) return res
轮廓处理的话主要用到两个函数,cv2.findContours和cv2.drawContours,这两个函数的使用使用方法很容易搜到就不说了,这部分主要的问题是提取到的轮廓有很多个,但是我们只需要手的轮廓,所以我们要用sorted函数找到最大的轮廓。
def B(img): #binaryimg = cv2.Canny(Laplacian, 50, 200) #二值化,canny检测 h = cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) #寻找轮廓 contour = h[0] contour = sorted(contour, key = cv2.contourArea, reverse=True)#已轮廓区域面积进行排序 #contourmax = contour[0][:, 0, :]#保留区域面积最大的轮廓点坐标 bg = np.ones(dst.shape, np.uint8) *255#创建白色幕布 ret = cv2.dra wContours(bg,contour[0],-1,(0,0,0),3) #绘制黑色轮廓 return ret
全部代码:
""" 从视频读取帧保存为图片""" import cv2 import numpy as np cap = cv2.VideoCapture("C:/Users/lenovo/Videos/1.mp4")#读取文件 #cap = cv2.VideoCapture(0)#读取摄像头 #皮肤检测 def A(img): YCrCb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) #转换至YCrCb空间 (y,cr,cb) = cv2.split(YCrCb) #拆分出Y,Cr,Cb值 cr1 = cv2.GaussianBlur(cr, (5,5), 0) _, skin = cv2.threshold(cr1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) #Ostu处理 res = cv2.bitwise_and(img,img, mask = skin) return res def B(img): #binaryimg = cv2.Canny(Laplacian, 50, 200) #二值化,canny检测 h = cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) #寻找轮廓 contour = h[0] contour = sorted(contour, key = cv2.contourArea, reverse=True)#已轮廓区域面积进行排序 #contourmax = contour[0][:, 0, :]#保留区域面积最大的轮廓点坐标 bg = np.ones(dst.shape, np.uint8) *255#创建白色幕布 ret = cv2.drawContours(bg,contour[0],-1,(0,0,0),3) #绘制黑色轮廓 return ret while(True): ret, frame = cap.read() #下面三行可以根据自己的电脑进行调节 src = cv2.resize(frame,(400,350), interpolation=cv2.INTER_CUBIC)#窗口大小 cv2.rectangle(src, (90, 60), (300, 300 ), (0, 255, 0))#框出截取位置 roi = src[60:300 , 90:300] # 获取手势框图 res = A(roi) # 进行肤色检测 cv2.imshow("0",roi) gray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY) dst = cv2.Laplacian(gray, cv2.CV_16S, ksize = 3) Laplacian = cv2.convertScaleAbs(dst) contour = B(Laplacian)#轮廓处理 cv2.imshow("2",contour) key = cv2.waitKey(50) & 0xFF if key == ord('q'): break cap.release() cv2.destroyAllWindows()
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了pytorch实现简单全连接层的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
大家平时在工作与学习中都会操作到Excel文件格式,特别是很多数据的时候,靠人力去识别操作非常容易出错。今天就带大家用Python来处理Excel文件,让你成为一个别人眼中的秀儿
如果想要充分利用,在python中大部分情况需要使用多进程,那么这个包就叫做multiprocessing。借助它,可以轻松完成从单进程到并发执行的转换。multiprocessing支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。那么本节要介绍的内容有:ProcessLockSemaphoreQueuePipePoo
文本给大家分享的关于python实现反转字符串的技巧,这次我们要实现的效果是,将给定的一个字符串中的每个单词,做逐个翻转。那么具体怎么实现呢?下面我们一起来看看。
GFPGAN是腾讯开源的人脸修复算法,它利用预先训练好的面部 GAN(如 StyleGAN2)中封装的丰富和多样的先验因素进行盲脸 (blind face)修复。这篇文章主要为大家介绍通过GFPGAN实现模糊照片人脸恢复清晰,需要的朋友可以参考一下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008