如何使用Python图像边缘检测算法,有什么优势吗

Admin 2022-08-17 群英技术资讯 231 次浏览

今天小编跟大家讲解下有关“如何使用Python图像边缘检测算法,有什么优势吗”的内容 ,相信小伙伴们对这个话题应该有所关注吧,小编也收集到了相关资料,希望小伙伴们看了有所帮助。


从本节开始,计算机视觉教程进入第三章节——图像特征提取。在本章,你会见到一张简简单单的图片中蕴含着这么多你没注意到的细节特征,而这些特征将会在今后更高级的应用中发挥着极其重要的作用。本文讲解基础特征之一——图像边缘。

本文采用面向对象设计,定义了一个边缘检测类EdgeDetect,使图像边缘检测算法的应用更简洁,例如

import cv2
import numpy as np
import matplotlib.pyplot as plt

Detector = EdgeDetect('1.jpg')
Prewitt = Detector.prewitt()
plt.imshow(Prewitt , 'gray')
plt.show()

这个类的构造函数为

class EdgeDetect:
    def __init__(self, img) -> None:
        self.src = cv2.imread(img)
        self.gray = cv2.cvtColor(self.src, cv2.COLOR_BGR2GRAY)

读取的是图像的基本信息。

1.一阶微分算子

图像边缘是数字图像的高频成分,对应图像梯度的极值。在二维离散数字图像上,某个方向上图像强度函数微分使用有限差分法来近似,即:

因此图像边缘检测即是对图像的差分运算。

1.1 Prewitt算子

Prewitt算子本质上就是x或y方向上相邻像素的差分。

那我们常说的图像梯度是什么意思呢?

其实就是用x与y方向上相邻像素的差分为方向的向量

在编程实现上,就是构造上图的两个方向的滤波算子,然后将x xx、y yy两个方向的边缘合成就是整张图各方向的边缘检测结果

def prewitt(self):
    # Prewitt 算子
    kernelX = np.array([[1,1,1],[0,0,0],[-1,-1,-1]], dtype=int)
    kernelY = np.array([[-1,0,1],[-1,0,1],[-1,0,1]], dtype=int)
    # 对图像滤波
    x = cv2.filter2D(self.gray, cv2.CV_16S, kernelX)
    y = cv2.filter2D(self.gray, cv2.CV_16S, kernelY)
    # 转 uint8 ,图像融合
    absX = cv2.convertScaleAbs(x)
    absY = cv2.convertScaleAbs(y)
    return cv2.addWeighted(absX, 0.5, absY, 0.5, 0)

1.2 Sobel算子

对高斯核函数x、y方向求导,并将其模板化即得Sobel算子。Sobel算子相比于Prewitt算子有更强的抗噪能力,因为其结合了高斯滤波的效果。

在编程实现上,就是构造上图的两个方向的滤波算子,然后将x、y两个方向的边缘合成就是整张图各方向的边缘检测结果

def sobel(self):
    # Sobel 算子
    kernelX = np.array([[1, 2, 1],[0, 0, 0],[-1, -2, -1]],dtype=int)
    kernelY = np.array([[-1, -2, -1],[0, 0, 0],[1, 2, 1]],dtype=int)
    # 对图像滤波
    x = cv2.filter2D(self.gray, cv2.CV_16S, kernelX)
    y = cv2.filter2D(self.gray, cv2.CV_16S, kernelY)
    # 转 uint8 ,图像融合
    absX = cv2.convertScaleAbs(x)
    absY = cv2.convertScaleAbs(y)
    return cv2.addWeighted(absX, 0.5, absY, 0.5, 0)

2.二阶微分算子

2.1 Laplace算子

将Laplace算子

写成差分方程形式为

将差分方程进一步写成卷积核形式如图(a),可将其扩展为图(b)使之具有各向同性。微分算子属于高通滤波,在锐化边缘的同时也增强了噪点,因此Laplace算子抗噪能力弱,且不能检测边缘方向。

在编程实现上,就是构造上图的滤波算子

# Laplace 算子
def laplace(self):
    kernel = np.array([[0, -1, 0], [-1, 4, -1], [0, -1, 0]], dtype=int)
    img = cv2.filter2D(self.gray, cv2.CV_16S, kernel)
    return cv2.convertScaleAbs(img)

2.2 LoG算子

为克服Laplace算子抗噪能力弱这一问题,引入高斯-拉普拉斯算子(LoG, Laplace of Gaussian),即先低通滤除噪声,再高通强化边缘,LoG算子本质上是带通滤波器。

在编程实现上,就是构造上图的滤波算子

# LoG算子
def LoG(self):
    kernel = np.array([[0, 0, 1, 0, 0], [0, 1, 2, 1, 0], [1, 2, -16, 2, 1], [0, 1, 2, 1, 0], [0, 0, 1, 0, 0]], dtype=int)
    img = cv2.filter2D(self.gray, cv2.CV_16S, kernel)
    return cv2.convertScaleAbs(img)

3.Canny边缘检测

Canny边缘检测算法可以分为以下步骤。

  • 使用Sobel算子滤除原图像噪声,并得到梯度图;
  • 应用非极大值抑制(Non-Maximum Suppression, NMS)以消除边缘检测、目标检测带来的杂散响应,即对待测边缘或目标,应尽可能有唯一的准确响应
  • 应用双阈值(Double-Threshold)检测来确定真实的和潜在的边缘。

使用如下双阈值检测算法解决因噪声引起的杂散边缘响应。

阈值的选择取决于给定输入图像的内容。下面对弱边缘进一步审查,即

通常,由真实边缘引起的弱边缘像素将连接到强边缘像素,而噪声响应未连接。为了跟踪边缘连接,通过查看弱边缘像素的8个邻域像素是否存在强边缘像素,来决定是否滤除该弱边缘点。

下面是Canny边缘检测算法的效果。


“如何使用Python图像边缘检测算法,有什么优势吗”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业技术相关的知识可以关注群英网络网站,小编每天都会为大家更新不同的知识。 群英智防CDN,智能加速解决方案

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服