Canny边缘检测的步骤包括哪些,具体怎样做
Admin 2022-08-13 群英技术资讯 318 次浏览
Canny边缘检测是一种使用多级边缘检测算法检测边缘的方法。
OpenCV提供了函数cv2.Canny()实现Canny边缘检测。
Canny边缘检测分为如下几个步骤:
图像边缘非常容易受到噪声的干扰,因此为了避免检测到错误的边缘信息,通常需要对图像进行滤波以去除噪声。
滤波的目的是平滑一些纹理较弱的非边缘区域,以便得到更准确的边缘。在实际处理过程中,通常采用高斯滤波去除图像中的噪声。在滤波过程中,通过滤波器对像素点周围的像素计算加权平均值,获取最终滤波结果。对于高斯滤波器,越临近中心的点,权值越大。
滤波器的大小也是可变的,高斯核的大小对于边缘检测的效果具有很重要的作用。滤波器的核越大,边缘信息对于噪声的敏感度就越低。不过,核越大,边缘检测的定位错误也会随之增加。通常来说,一个5×5的核能够满足大多数的情况。
关注梯度的方向,梯度的方向与边缘的方向是垂直的。
边缘检测算子返回水平方向的Gx和垂直方向的Gy。
梯度的幅度G和方向Θ(用角度值表示)为:
atan2(·)表示具有两个参数的arctan函数。
梯度的方向总是与边缘垂直的,通常就近取值为水平(左、右)、垂直(上、下)、对角线(右上、左上、左下、右下)等8个不同的方向。
在计算梯度时,我们会得到梯度的幅度和角度(代表梯度的方向)两个值。
梯度的表示法: 其中,每一个梯度包含幅度和角度两个不同的值。为了方便观察,这里使用了可视化表示方法。
左上角顶点的值“2↑”实际上表示的是一个二元数对“(2, 90)”,表示梯度的幅度为2,角度为90°。
在获得了梯度的幅度和方向后,遍历图像中的像素点,去除所有非边缘的点。
在具体实现时,逐一遍历像素点,判断当前像素点是否是周围像素点中具有相同梯度方向的最大值,并根据判断结果决定是否抑制该点。
通过以上描述可知,该步骤是边缘细化的过程。针对每一个像素点:
(梯度方向垂直于边缘)
“正/负梯度方向上”是指相反方向的梯度方向。
对于同一个方向的若干个边缘点,基本上仅保留了一个,因此实现了边缘细化的目的。
完成上述步骤后,图像内的强边缘已经在当前获取的边缘图像内。但是,一些虚边缘可能也在边缘图像内。
这些虚边缘可能是真实图像产生的,也可能是由于噪声所产生的。对于后者,必须将其剔除。设置两个阈值,其中一个为高阈值maxVal,另一个为低阈值minVal。根据当前边缘像素的梯度值(指的是梯度幅度)与这两个阈值之间的关系,判断边缘的属性。
具体步骤为:
在上述过程中,我们得到了虚边缘,需要对其做进一步处理。一般通过判断虚边缘与强边缘是否连接,来确定虚边缘到底属于哪种情况。
通常情况下,如果一个虚边缘:
高阈值maxVal和低阈值minVal不是固定的,需要针对不同的图像进行定义。
OpenCV提供了函数cv2.Canny()来实现Canny边缘检测,其语法形式如下:
edges = cv.Canny( image, threshold1, threshold2[, apertureSize[, L2gradient]])
**例子:**使用函数cv2.Canny()获取图像的边缘,并尝试使用不同大小的threshold1和threshold2,观察获取到的边缘有何不同。
import cv2 o=cv2.imread("./img/hand1.png", cv2.IMREAD_GRAYSCALE) r1=cv2.Canny(o,128,200) r2=cv2.Canny(o,32,128) cv2.imshow("original", o) cv2.imshow("result1", r1) cv2.imshow("result2", r2) cv2.waitKey() cv2.destroyAllWindows()
当函数cv2.Canny()的参数threshold1和threshold2的值较小时,能够捕获更多的边缘信息。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要给大家介绍了关于Python matplotlib绘制散点图的相关资料,所谓散点图就是反映两组变量每个数据点的值,并且从散点图可以看出它们之间的相关性,需要的朋友可以参考下
在新旧版的torch中的傅里叶变换函数在定义和用法上存在不同,记录一下。下文有实例供大家参考,对大家了解操作过程或相关知识有一定的帮助,而且实用性强,希望这篇文章能帮助大家,下面我们一起来了解看看吧。
python列表的增删操作怎样实现?对列表做增删操作是比较常见的需求,也是很基础的内容,对此这篇文章就给大家分享一些python列表的增删操作的实例,感兴趣的朋友可以参考。
这篇文章主要为大家介绍了python人工智能tensorflow函数tf.get_variable使用方法示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
目录前言:实例1实例2前言:字符画:字符画是一系列字符的组合,我们可以把字符看作是比较大块的像素,一个字符能表现一种颜色,字符的种类越多,可以表现的颜色也越多,图片也会更有层次感
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008