Python中如何进行处理图像,方法是什么

Admin 2022-08-12 群英技术资讯 316 次浏览

这篇文章给大家分享的是“Python中如何进行处理图像,方法是什么”,对大家学习和理解有一定的参考价值和帮助,有这方面学习需要的朋友,接下来就跟随小编一起学习一下吧。

一、安装ROS-OpenCV

安装OpenCVsudo apt-get install ros-kinetic-vision-opencv libopencv-dev python-opencv
ROS进行图像处理是依赖于OpenCV库的。ROS通过一个叫CvBridge的功能包,将获取的图像数据转换成OpenCV的格式,OpenCV处理之后,传回给ROS进行图像显示(应用),如下图:

二、简单案例分析

我们使用ROS驱动获取摄像头数据,将ROS获得的数据通过CvBridge转换成OpenCV需要的格式,调用OpenCV的算法库对这个图片进行处理(如画一个圆),然后返回给ROS进行rviz显示。

1.usb_cam.launch

首先我们建立一个launch文件,可以调用摄像头驱动获取图像数据。运行launch文件roslaunch xxx(功能包名) usb_cam.launch

<launch>
    <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >
      <param name="video_device" value="/dev/video0" />
      <param name="image_width" value="1280" />
      <param name="image_height" value="720" />
      <param name="pixel_format" value="yuyv" />
      <param name="camera_frame_id" value="usb_cam" />
      <param name="io_method" value="mmap"/>
    </node>
</launch>

2.cv_bridge_test.py

建立一个py文件,是python2的。实现接收ROS发的图像信息,在图像上画一个圆后,返回给ROS。返回的话题名称是cv_bridge_image。运行py文件rosrun xxx(功能包名) cv_bridge_test.py
如果出现权限不够的情况,记得切换到py文件目录下执行:sudo chmod +x *.py

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import rospy
import cv2
from cv_bridge import CvBridge, CvBridgeError
from sensor_msgs.msg import Image

class image_converter:
    def __init__(self):    
        # 创建cv_bridge,声明图像的发布者和订阅者
        self.image_pub = rospy.Publisher("cv_bridge_image", Image, queue_size=1)
        self.bridge = CvBridge()
        self.image_sub = rospy.Subscriber("/usb_cam/image_raw", Image, self.callback)

    def callback(self,data):
        # 使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式
        try:
            cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
        except CvBridgeError as e:
            print e

        # 在opencv的显示窗口中绘制一个圆,作为标记
        (rows,cols,channels) = cv_image.shape
        if cols > 60 and rows > 60 :
            cv2.circle(cv_image, (60, 60), 30, (0,0,255), -1)

        # 显示Opencv格式的图像
        cv2.imshow("Image window", cv_image)
        cv2.waitKey(3)

        # 再将opencv格式额数据转换成ros image格式的数据发布
        try:
            self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, "bgr8"))
        except CvBridgeError as e:
            print e

if __name__ == '__main__':
    try:
        # 初始化ros节点
        rospy.init_node("cv_bridge_test")
        rospy.loginfo("Starting cv_bridge_test node")
        image_converter()
        rospy.spin()
    except KeyboardInterrupt:
        print "Shutting down cv_bridge_test node."
        cv2.destroyAllWindows()

3.rqt_image_view

在终端下执行rqt_image_view,订阅cv_bridge_image话题,可以发现OpenCV处理之后的图像在ROS中显示出来。

三、CvBridge相关API

1.imgmsg_to_cv2()

将ROS图像消息转换成OpenCV图像数据;

# 使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式
try:
    cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
except CvBridgeError as e:
    print e

2.cv2_to_imgmsg()

将OpenCV格式的图像数据转换成ROS图像消息;

# 再将opencv格式额数据转换成ros image格式的数据发布
try:
    self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, "bgr8"))
except CvBridgeError as e:
    print e

四、利用ROS+OpenCV实现人脸检测案例

1.usb_cam.launch

这个launch和上一个案例一样先打开摄像头驱动获取图像数据。运行launch文件roslaunch xxx(功能包名) usb_cam.launch

<launch>
    <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >
      <param name="video_device" value="/dev/video0" />
      <param name="image_width" value="1280" />
      <param name="image_height" value="720" />
      <param name="pixel_format" value="yuyv" />
      <param name="camera_frame_id" value="usb_cam" />
      <param name="io_method" value="mmap"/>
    </node>
</launch>

2.face_detector.launch

人脸检测算法采用基于Harr特征的级联分类器对象检测算法,检测效果并不佳。但是这里只是为了演示如何使用ROS和OpenCV进行图像处理,所以不必在乎算法本身效果。整个launch调用了一个py文件和两个xml文件,分别如下:

2.1 launch

<launch>
    <node pkg="robot_vision" name="face_detector" type="face_detector.py" output="screen">
        <remap from="input_rgb_image" to="/usb_cam/image_raw" />
        <rosparam>
            haar_scaleFactor: 1.2
            haar_minNeighbors: 2
            haar_minSize: 40
            haar_maxSize: 60
        </rosparam>
        <param name="cascade_1" value="$(find robot_vision)/data/haar_detectors/haarcascade_frontalface_alt.xml" />
        <param name="cascade_2" value="$(find robot_vision)/data/haar_detectors/haarcascade_profileface.xml" />
    </node>
</launch>

2.2 face_detector.py

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import rospy
import cv2
import numpy as np
from sensor_msgs.msg import Image, RegionOfInterest
from cv_bridge import CvBridge, CvBridgeError

class faceDetector:
    def __init__(self):
        rospy.on_shutdown(self.cleanup);

        # 创建cv_bridge
        self.bridge = CvBridge()
        self.image_pub = rospy.Publisher("cv_bridge_image", Image, queue_size=1)

        # 获取haar特征的级联表的XML文件,文件路径在launch文件中传入
        cascade_1 = rospy.get_param("~cascade_1", "")
        cascade_2 = rospy.get_param("~cascade_2", "")

        # 使用级联表初始化haar特征检测器
        self.cascade_1 = cv2.CascadeClassifier(cascade_1)
        self.cascade_2 = cv2.CascadeClassifier(cascade_2)

        # 设置级联表的参数,优化人脸识别,可以在launch文件中重新配置
        self.haar_scaleFactor  = rospy.get_param("~haar_scaleFactor", 1.2)
        self.haar_minNeighbors = rospy.get_param("~haar_minNeighbors", 2)
        self.haar_minSize      = rospy.get_param("~haar_minSize", 40)
        self.haar_maxSize      = rospy.get_param("~haar_maxSize", 60)
        self.color = (50, 255, 50)

        # 初始化订阅rgb格式图像数据的订阅者,此处图像topic的话题名可以在launch文件中重映射
        self.image_sub = rospy.Subscriber("input_rgb_image", Image, self.image_callback, queue_size=1)

    def image_callback(self, data):
        # 使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式
        try:
            cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")     
            frame = np.array(cv_image, dtype=np.uint8)
        except CvBridgeError, e:
            print e

        # 创建灰度图像
        grey_image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

        # 创建平衡直方图,减少光线影响
        grey_image = cv2.equalizeHist(grey_image)

        # 尝试检测人脸
        faces_result = self.detect_face(grey_image)

        # 在opencv的窗口中框出所有人脸区域
        if len(faces_result)>0:
            for face in faces_result: 
                x, y, w, h = face
                cv2.rectangle(cv_image, (x, y), (x+w, y+h), self.color, 2)

        # 将识别后的图像转换成ROS消息并发布
        self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, "bgr8"))

    def detect_face(self, input_image):
        # 首先匹配正面人脸的模型
        if self.cascade_1:
            faces = self.cascade_1.detectMultiScale(input_image, 
                    self.haar_scaleFactor, 
                    self.haar_minNeighbors, 
                    cv2.CASCADE_SCALE_IMAGE, 
                    (self.haar_minSize, self.haar_maxSize))
                                         
        # 如果正面人脸匹配失败,那么就尝试匹配侧面人脸的模型
        if len(faces) == 0 and self.cascade_2:
            faces = self.cascade_2.detectMultiScale(input_image, 
                    self.haar_scaleFactor, 
                    self.haar_minNeighbors, 
                    cv2.CASCADE_SCALE_IMAGE, 
                    (self.haar_minSize, self.haar_maxSize))
        
        return faces

    def cleanup(self):
        print "Shutting down vision node."
        cv2.destroyAllWindows()

if __name__ == '__main__':
    try:
        # 初始化ros节点
        rospy.init_node("face_detector")
        faceDetector()
        rospy.loginfo("Face detector is started..")
        rospy.loginfo("Please subscribe the ROS image.")
        rospy.spin()
    except KeyboardInterrupt:
        print "Shutting down face detector node."
        cv2.destroyAllWindows()

2.3 两个xml文件

链接

3.rqt_image_view

运行完上述两个launch文件后,在终端下执行rqt_image_view,订阅cv_bridge_image话题,可以发现OpenCV处理之后的图像在ROS中显示出来。

五、利用ROS+OpenCV实现帧差法物体追踪

1.usb_cam.launch

这个launch和前两个案例一样先打开摄像头驱动获取图像数据。运行launch文件roslaunch xxx(功能包名) usb_cam.launch

<launch>
    <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >
      <param name="video_device" value="/dev/video0" />
      <param name="image_width" value="1280" />
      <param name="image_height" value="720" />
      <param name="pixel_format" value="yuyv" />
      <param name="camera_frame_id" value="usb_cam" />
      <param name="io_method" value="mmap"/>
    </node>
</launch>

2.motion_detector.launch

物体追踪方法采用帧差法,追踪效果并不佳。但是这里只是为了演示如何使用ROS和OpenCV进行图像处理,所以不必在乎算法本身效果。整个launch调用了一个py文件,如下:

2.1 launch

<launch>
    <node pkg="robot_vision" name="motion_detector" type="motion_detector.py" output="screen">
        <remap from="input_rgb_image" to="/usb_cam/image_raw" />
        <rosparam>
            minArea: 500
            threshold: 25
        </rosparam>
    </node>
</launch>

2.2 motion_detector.py

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import rospy
import cv2
import numpy as np
from sensor_msgs.msg import Image, RegionOfInterest
from cv_bridge import CvBridge, CvBridgeError

class motionDetector:
    def __init__(self):
        rospy.on_shutdown(self.cleanup);

        # 创建cv_bridge
        self.bridge = CvBridge()
        self.image_pub = rospy.Publisher("cv_bridge_image", Image, queue_size=1)

        # 设置参数:最小区域、阈值
        self.minArea   = rospy.get_param("~minArea",   500)
        self.threshold = rospy.get_param("~threshold", 25)

        self.firstFrame = None
        self.text = "Unoccupied"

        # 初始化订阅rgb格式图像数据的订阅者,此处图像topic的话题名可以在launch文件中重映射
        self.image_sub = rospy.Subscriber("input_rgb_image", Image, self.image_callback, queue_size=1)

    def image_callback(self, data):
        # 使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式
        try:
            cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")     
            frame = np.array(cv_image, dtype=np.uint8)
        except CvBridgeError, e:
            print e

        # 创建灰度图像
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        gray = cv2.GaussianBlur(gray, (21, 21), 0)

        # 使用两帧图像做比较,检测移动物体的区域
        if self.firstFrame is None:
            self.firstFrame = gray
            return  
        frameDelta = cv2.absdiff(self.firstFrame, gray)
        thresh = cv2.threshold(frameDelta, self.threshold, 255, cv2.THRESH_BINARY)[1]

        thresh = cv2.dilate(thresh, None, iterations=2)
        binary, cnts, hierarchy= cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

        for c in cnts:
            # 如果检测到的区域小于设置值,则忽略
            if cv2.contourArea(c) < self.minArea:
               continue 

            # 在输出画面上框出识别到的物体
            (x, y, w, h) = cv2.boundingRect(c)
            cv2.rectangle(frame, (x, y), (x + w, y + h), (50, 255, 50), 2)
            self.text = "Occupied"

        # 在输出画面上打当前状态和时间戳信息
        cv2.putText(frame, "Status: {}".format(self.text), (10, 20),
            cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)

        # 将识别后的图像转换成ROS消息并发布
        self.image_pub.publish(self.bridge.cv2_to_imgmsg(frame, "bgr8"))

    def cleanup(self):
        print "Shutting down vision node."
        cv2.destroyAllWindows()

if __name__ == '__main__':
    try:
        # 初始化ros节点
        rospy.init_node("motion_detector")
        rospy.loginfo("motion_detector node is started...")
        rospy.loginfo("Please subscribe the ROS image.")
        motionDetector()
        rospy.spin()
    except KeyboardInterrupt:
        print "Shutting down motion detector node."
        cv2.destroyAllWindows()

3.rqt_image_view

运行完上述两个launch文件后,在终端下执行rqt_image_view,订阅cv_bridge_image话题,可以发现OpenCV处理之后的图像在ROS中显示出来。(鉴于我的测试环境比较糟糕,并且这个算法本身精度不高,就不展示最终效果了)


“Python中如何进行处理图像,方法是什么”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业技术相关的知识可以关注群英网络网站,小编每天都会为大家更新不同的知识。 群英智防CDN,智能加速解决方案
标签: python处理图像

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服