Python中如何进行处理图像,方法是什么
Admin 2022-08-12 群英技术资讯 316 次浏览
安装OpenCVsudo apt-get install ros-kinetic-vision-opencv libopencv-dev python-opencv
ROS进行图像处理是依赖于OpenCV库的。ROS通过一个叫CvBridge的功能包,将获取的图像数据转换成OpenCV的格式,OpenCV处理之后,传回给ROS进行图像显示(应用),如下图:
我们使用ROS驱动获取摄像头数据,将ROS获得的数据通过CvBridge转换成OpenCV需要的格式,调用OpenCV的算法库对这个图片进行处理(如画一个圆),然后返回给ROS进行rviz显示。
首先我们建立一个launch文件,可以调用摄像头驱动获取图像数据。运行launch文件roslaunch xxx(功能包名) usb_cam.launch
<launch> <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" > <param name="video_device" value="/dev/video0" /> <param name="image_width" value="1280" /> <param name="image_height" value="720" /> <param name="pixel_format" value="yuyv" /> <param name="camera_frame_id" value="usb_cam" /> <param name="io_method" value="mmap"/> </node> </launch>
建立一个py文件,是python2的。实现接收ROS发的图像信息,在图像上画一个圆后,返回给ROS。返回的话题名称是cv_bridge_image
。运行py文件rosrun xxx(功能包名) cv_bridge_test.py
如果出现权限不够的情况,记得切换到py文件目录下执行:sudo chmod +x *.py
#!/usr/bin/env python # -*- coding: utf-8 -*- import rospy import cv2 from cv_bridge import CvBridge, CvBridgeError from sensor_msgs.msg import Image class image_converter: def __init__(self): # 创建cv_bridge,声明图像的发布者和订阅者 self.image_pub = rospy.Publisher("cv_bridge_image", Image, queue_size=1) self.bridge = CvBridge() self.image_sub = rospy.Subscriber("/usb_cam/image_raw", Image, self.callback) def callback(self,data): # 使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式 try: cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8") except CvBridgeError as e: print e # 在opencv的显示窗口中绘制一个圆,作为标记 (rows,cols,channels) = cv_image.shape if cols > 60 and rows > 60 : cv2.circle(cv_image, (60, 60), 30, (0,0,255), -1) # 显示Opencv格式的图像 cv2.imshow("Image window", cv_image) cv2.waitKey(3) # 再将opencv格式额数据转换成ros image格式的数据发布 try: self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, "bgr8")) except CvBridgeError as e: print e if __name__ == '__main__': try: # 初始化ros节点 rospy.init_node("cv_bridge_test") rospy.loginfo("Starting cv_bridge_test node") image_converter() rospy.spin() except KeyboardInterrupt: print "Shutting down cv_bridge_test node." cv2.destroyAllWindows()
在终端下执行rqt_image_view,订阅cv_bridge_image话题,可以发现OpenCV处理之后的图像在ROS中显示出来。
将ROS图像消息转换成OpenCV图像数据;
# 使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式 try: cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8") except CvBridgeError as e: print e
将OpenCV格式的图像数据转换成ROS图像消息;
# 再将opencv格式额数据转换成ros image格式的数据发布 try: self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, "bgr8")) except CvBridgeError as e: print e
这个launch和上一个案例一样先打开摄像头驱动获取图像数据。运行launch文件roslaunch xxx(功能包名) usb_cam.launch
<launch> <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" > <param name="video_device" value="/dev/video0" /> <param name="image_width" value="1280" /> <param name="image_height" value="720" /> <param name="pixel_format" value="yuyv" /> <param name="camera_frame_id" value="usb_cam" /> <param name="io_method" value="mmap"/> </node> </launch>
人脸检测算法采用基于Harr特征的级联分类器对象检测算法,检测效果并不佳。但是这里只是为了演示如何使用ROS和OpenCV进行图像处理,所以不必在乎算法本身效果。整个launch调用了一个py文件和两个xml文件,分别如下:
<launch> <node pkg="robot_vision" name="face_detector" type="face_detector.py" output="screen"> <remap from="input_rgb_image" to="/usb_cam/image_raw" /> <rosparam> haar_scaleFactor: 1.2 haar_minNeighbors: 2 haar_minSize: 40 haar_maxSize: 60 </rosparam> <param name="cascade_1" value="$(find robot_vision)/data/haar_detectors/haarcascade_frontalface_alt.xml" /> <param name="cascade_2" value="$(find robot_vision)/data/haar_detectors/haarcascade_profileface.xml" /> </node> </launch>
#!/usr/bin/env python # -*- coding: utf-8 -*- import rospy import cv2 import numpy as np from sensor_msgs.msg import Image, RegionOfInterest from cv_bridge import CvBridge, CvBridgeError class faceDetector: def __init__(self): rospy.on_shutdown(self.cleanup); # 创建cv_bridge self.bridge = CvBridge() self.image_pub = rospy.Publisher("cv_bridge_image", Image, queue_size=1) # 获取haar特征的级联表的XML文件,文件路径在launch文件中传入 cascade_1 = rospy.get_param("~cascade_1", "") cascade_2 = rospy.get_param("~cascade_2", "") # 使用级联表初始化haar特征检测器 self.cascade_1 = cv2.CascadeClassifier(cascade_1) self.cascade_2 = cv2.CascadeClassifier(cascade_2) # 设置级联表的参数,优化人脸识别,可以在launch文件中重新配置 self.haar_scaleFactor = rospy.get_param("~haar_scaleFactor", 1.2) self.haar_minNeighbors = rospy.get_param("~haar_minNeighbors", 2) self.haar_minSize = rospy.get_param("~haar_minSize", 40) self.haar_maxSize = rospy.get_param("~haar_maxSize", 60) self.color = (50, 255, 50) # 初始化订阅rgb格式图像数据的订阅者,此处图像topic的话题名可以在launch文件中重映射 self.image_sub = rospy.Subscriber("input_rgb_image", Image, self.image_callback, queue_size=1) def image_callback(self, data): # 使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式 try: cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8") frame = np.array(cv_image, dtype=np.uint8) except CvBridgeError, e: print e # 创建灰度图像 grey_image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 创建平衡直方图,减少光线影响 grey_image = cv2.equalizeHist(grey_image) # 尝试检测人脸 faces_result = self.detect_face(grey_image) # 在opencv的窗口中框出所有人脸区域 if len(faces_result)>0: for face in faces_result: x, y, w, h = face cv2.rectangle(cv_image, (x, y), (x+w, y+h), self.color, 2) # 将识别后的图像转换成ROS消息并发布 self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, "bgr8")) def detect_face(self, input_image): # 首先匹配正面人脸的模型 if self.cascade_1: faces = self.cascade_1.detectMultiScale(input_image, self.haar_scaleFactor, self.haar_minNeighbors, cv2.CASCADE_SCALE_IMAGE, (self.haar_minSize, self.haar_maxSize)) # 如果正面人脸匹配失败,那么就尝试匹配侧面人脸的模型 if len(faces) == 0 and self.cascade_2: faces = self.cascade_2.detectMultiScale(input_image, self.haar_scaleFactor, self.haar_minNeighbors, cv2.CASCADE_SCALE_IMAGE, (self.haar_minSize, self.haar_maxSize)) return faces def cleanup(self): print "Shutting down vision node." cv2.destroyAllWindows() if __name__ == '__main__': try: # 初始化ros节点 rospy.init_node("face_detector") faceDetector() rospy.loginfo("Face detector is started..") rospy.loginfo("Please subscribe the ROS image.") rospy.spin() except KeyboardInterrupt: print "Shutting down face detector node." cv2.destroyAllWindows()
链接
运行完上述两个launch文件后,在终端下执行rqt_image_view,订阅cv_bridge_image话题,可以发现OpenCV处理之后的图像在ROS中显示出来。
这个launch和前两个案例一样先打开摄像头驱动获取图像数据。运行launch文件roslaunch xxx(功能包名) usb_cam.launch
<launch> <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" > <param name="video_device" value="/dev/video0" /> <param name="image_width" value="1280" /> <param name="image_height" value="720" /> <param name="pixel_format" value="yuyv" /> <param name="camera_frame_id" value="usb_cam" /> <param name="io_method" value="mmap"/> </node> </launch>
物体追踪方法采用帧差法,追踪效果并不佳。但是这里只是为了演示如何使用ROS和OpenCV进行图像处理,所以不必在乎算法本身效果。整个launch调用了一个py文件,如下:
<launch> <node pkg="robot_vision" name="motion_detector" type="motion_detector.py" output="screen"> <remap from="input_rgb_image" to="/usb_cam/image_raw" /> <rosparam> minArea: 500 threshold: 25 </rosparam> </node> </launch>
#!/usr/bin/env python # -*- coding: utf-8 -*- import rospy import cv2 import numpy as np from sensor_msgs.msg import Image, RegionOfInterest from cv_bridge import CvBridge, CvBridgeError class motionDetector: def __init__(self): rospy.on_shutdown(self.cleanup); # 创建cv_bridge self.bridge = CvBridge() self.image_pub = rospy.Publisher("cv_bridge_image", Image, queue_size=1) # 设置参数:最小区域、阈值 self.minArea = rospy.get_param("~minArea", 500) self.threshold = rospy.get_param("~threshold", 25) self.firstFrame = None self.text = "Unoccupied" # 初始化订阅rgb格式图像数据的订阅者,此处图像topic的话题名可以在launch文件中重映射 self.image_sub = rospy.Subscriber("input_rgb_image", Image, self.image_callback, queue_size=1) def image_callback(self, data): # 使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式 try: cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8") frame = np.array(cv_image, dtype=np.uint8) except CvBridgeError, e: print e # 创建灰度图像 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (21, 21), 0) # 使用两帧图像做比较,检测移动物体的区域 if self.firstFrame is None: self.firstFrame = gray return frameDelta = cv2.absdiff(self.firstFrame, gray) thresh = cv2.threshold(frameDelta, self.threshold, 255, cv2.THRESH_BINARY)[1] thresh = cv2.dilate(thresh, None, iterations=2) binary, cnts, hierarchy= cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for c in cnts: # 如果检测到的区域小于设置值,则忽略 if cv2.contourArea(c) < self.minArea: continue # 在输出画面上框出识别到的物体 (x, y, w, h) = cv2.boundingRect(c) cv2.rectangle(frame, (x, y), (x + w, y + h), (50, 255, 50), 2) self.text = "Occupied" # 在输出画面上打当前状态和时间戳信息 cv2.putText(frame, "Status: {}".format(self.text), (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) # 将识别后的图像转换成ROS消息并发布 self.image_pub.publish(self.bridge.cv2_to_imgmsg(frame, "bgr8")) def cleanup(self): print "Shutting down vision node." cv2.destroyAllWindows() if __name__ == '__main__': try: # 初始化ros节点 rospy.init_node("motion_detector") rospy.loginfo("motion_detector node is started...") rospy.loginfo("Please subscribe the ROS image.") motionDetector() rospy.spin() except KeyboardInterrupt: print "Shutting down motion detector node." cv2.destroyAllWindows()
运行完上述两个launch文件后,在终端下执行rqt_image_view,订阅cv_bridge_image话题,可以发现OpenCV处理之后的图像在ROS中显示出来。(鉴于我的测试环境比较糟糕,并且这个算法本身精度不高,就不展示最终效果了)
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
内容介绍1.绘制面积图2.绘制热力图1.绘制面积图面积图常用于描述某指标随时间的变化程度。其面积也通常可以有一定的含义。绘制面积图使用的是plt.stackplot()方法。以小学时期学的常见的追击
这篇文章介绍了Python字节串类型bytes及用法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
近日在处理数据的时候发现有的文件为csv文件,Xiam 这篇文章主要给大家介绍了关于利用Python批量将csv文件编码方式转换为UTF-8的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下
这篇文章主要介绍python实现绘制分类图,遥感影像分类图一般为特定数值对应一类地物,用Python绘制时,主要在颜色的映射和对应的图例生成。废话不多说,下面我们就来具体看看实现代码,感兴趣的朋友可以参考。
人脸识别目前正被用于让世界更安全、更智能、更方便。在本文中,你将学习如何使用 Python 构建人脸识别系统。人脸识别比人脸检测更进一步。感兴趣的可以学习一下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008