Python数字图像处理操作及实例是什么
Admin 2022-08-11 群英技术资讯 267 次浏览
对于下面这幅图像,编程实现染色体计数,并附简要处理流程说明。
1.中值滤波
2.图像二值化
3.膨胀图像
4.腐蚀图像
5.计算光影背景
6.移除背景
7.检测染色体
import cv2 import numpy as np # 计算光影背景 def calculateLightPattern(img4): h, w = img4.shape[0], img4.shape[1] img5 = cv2.blur(img4, (int(w/3), int(w/3))) return img5 # 移除背景 def removeLight(img4, img5, method): if method == 1: img4_32 = np.float32(img4) img5_32 = np.float32(img5) ratio = img4_32 / img5_32 ratio[ratio > 1] = 1 aux = 1 - ratio # 按比例转换为8bit格式 aux = aux * 255 aux = np.uint8(aux) else: aux = img5 - img4 return aux def ConnectedComponents(aux): num_objects, labels = cv2.connectedComponents(aux) if num_objects < 2: print("connectedComponents未检测到染色体") return else: print("connectedComponents检测到染色体数量为:", num_objects - 1) output = np.zeros((aux.shape[0], aux.shape[1], 3), np.uint8) for i in range(1, num_objects): mask = labels == i output[:, :, 0][mask] = np.random.randint(0, 255) output[:, :, 1][mask] = np.random.randint(0, 255) output[:, :, 2][mask] = np.random.randint(0, 255) return output def ConnectedComponentsStats(aux): num_objects, labels, status, centroids = cv2.connectedComponentsWithStats(aux) if num_objects < 2: print("connectedComponentsWithStats未检测到染色体") return else: print("connectedComponentsWithStats检测到染色体数量为:", num_objects - 1) output = np.zeros((aux.shape[0], aux.shape[1], 3), np.uint8) for i in range(1, num_objects): mask = labels == i output[:, :, 0][mask] = np.random.randint(0, 255) output[:, :, 1][mask] = np.random.randint(0, 255) output[:, :, 2][mask] = np.random.randint(0, 255) return output def FindContours(aux): contours, hierarchy = cv2.findContours(aux, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if len(contours) == 0: print("findContours未检测到染色体") return else: print("findContours检测到染色体数量为:", len(contours)) output = np.zeros((aux.shape[0], aux.shape[1], 3), np.uint8) for i in range(len(contours)): cv2.drawContours( output, contours, i, (np.random.randint(0, 255), np.random.randint(0, 255), np.random.randint(0, 255)), 2) return output # 读取图片 img = cv2.imread('img.png', 0) pre_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 二值化函数 # 第一步:中值滤波 # 中值滤波 img1 = cv2.medianBlur(img, 3) # 显示并保存图片 cv2.imshow('gray', img) cv2.imshow('medianBlur', img1) cv2.imwrite('medianBlur.jpg', img1) # 第二步:图像二值化 # 图像二值化 ret, img2 = cv2.threshold(img1, 140, 255, 0, img1) # 二值化函数 # 显示并保存图片 cv2.imshow('threshold', img2) cv2.imwrite('threshold.jpg', img2) # 第三步:膨胀图像 dilate_kernel = np.ones((3, 3), np.uint8) img3 = cv2.dilate(img2, dilate_kernel) # 显示并保存图片 cv2.imshow('dilate', img3) cv2.imwrite('dilate.jpg', img3) # 第四步:腐蚀图像 erode_kernel = np.ones((7, 7), np.uint8) img4 = cv2.erode(img3, erode_kernel) # 显示并保存图片 cv2.imshow('erode', img4) cv2.imwrite('erode.jpg', img4) # 第五步:计算光影背景 img5 = calculateLightPattern(img4) # 显示并保存图片 cv2.imshow('LightPattern', img5) cv2.imwrite('LightPattern.jpg', img5) # 第六步:移除背景 aux = removeLight(img4, img5, 1) # 显示并保存图片 cv2.imshow('removeLight', aux) cv2.imwrite('removeLight.jpg', aux) # 第七步:检测轮廓 output1 = ConnectedComponents(aux) output2 = ConnectedComponentsStats(aux) output3 = FindContours(aux) # 显示并保存图片 cv2.imshow('connectedComponents', output1) cv2.imwrite('connectedComponents.jpg', output1) cv2.imshow('connectedComponentsWithStats', output2) cv2.imwrite('connectedComponentsWithStats.jpg', output2) cv2.imshow('findContours', output3) cv2.imwrite('findContours.jpg', output3) cv2.waitKey(0)
1.中值滤波
2.图像二值化
3.膨胀图像
4.腐蚀图像
5.计算光影背景
6.移除背景
7.检测染色体
(1)connectedComponents.jpg
(2)connectedComponentsWithStats.jpg
(3)findContours.jpg
染色体个数为46
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
通过 Python 绘制精美的地图?想在地图上自由的设置各种参数?想获得灵活的交互体验?这里就有一款Python 神包满足你:folium。
本文详细讲解了python爬虫之selenium模块,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
这篇文章主要为大家详细介绍了使用pytorch实现线性回归,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
PyWebIO提供了一系列命令式的交互函数来在浏览器上获取用户输入和进行输出,将浏览器变成了一个“富文本终端”,可以用于构建简单的Web应用或基于浏览器的GUI应用。本文将利用PyWebIO制作一个网页版的数据查询器,感兴趣的可以学习一下
本来我一直不知道怎么来更好地优化网页的性能,然后最近做python和php同类网页渲染速度比较时,意外地发现一个很简单很白痴但是 我一直没
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008