Python数字图像处理操作及实例是什么

Admin 2022-08-11 群英技术资讯 267 次浏览

今天就跟大家聊聊有关“Python数字图像处理操作及实例是什么”的内容,可能很多人都不太了解,为了让大家认识和更进一步的了解,小编给大家总结了以下内容,希望这篇“Python数字图像处理操作及实例是什么”文章能对大家有帮助。

一、实验内容 

对于下面这幅图像,编程实现染色体计数,并附简要处理流程说明。

二、实验步骤

1.中值滤波

2.图像二值化

3.膨胀图像

4.腐蚀图像

5.计算光影背景

6.移除背景

7.检测染色体

三、代码

import cv2
import numpy as np
# 计算光影背景
def calculateLightPattern(img4):
    h, w = img4.shape[0], img4.shape[1]
    img5 = cv2.blur(img4, (int(w/3), int(w/3)))
    return img5
# 移除背景
def removeLight(img4, img5, method):
    if method == 1:
        img4_32 = np.float32(img4)
        img5_32 = np.float32(img5)
        ratio = img4_32 / img5_32
        ratio[ratio > 1] = 1
        aux = 1 - ratio
        # 按比例转换为8bit格式
        aux = aux * 255
        aux = np.uint8(aux)
    else:
        aux = img5 - img4
    return aux
def ConnectedComponents(aux):
    num_objects, labels = cv2.connectedComponents(aux)
    if num_objects < 2:
        print("connectedComponents未检测到染色体")
        return
    else:
        print("connectedComponents检测到染色体数量为:", num_objects - 1)
    output = np.zeros((aux.shape[0], aux.shape[1], 3), np.uint8)
    for i in range(1, num_objects):
        mask = labels == i
        output[:, :, 0][mask] = np.random.randint(0, 255)
        output[:, :, 1][mask] = np.random.randint(0, 255)
        output[:, :, 2][mask] = np.random.randint(0, 255)
    return output
def ConnectedComponentsStats(aux):
    num_objects, labels, status, centroids = cv2.connectedComponentsWithStats(aux)
    if num_objects < 2:
        print("connectedComponentsWithStats未检测到染色体")
        return
    else:
        print("connectedComponentsWithStats检测到染色体数量为:", num_objects - 1)
    output = np.zeros((aux.shape[0], aux.shape[1], 3), np.uint8)
    for i in range(1, num_objects):
        mask = labels == i
        output[:, :, 0][mask] = np.random.randint(0, 255)
        output[:, :, 1][mask] = np.random.randint(0, 255)
        output[:, :, 2][mask] = np.random.randint(0, 255)
    return output
def FindContours(aux):
    contours, hierarchy = cv2.findContours(aux, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    if len(contours) == 0:
        print("findContours未检测到染色体")
        return
    else:
        print("findContours检测到染色体数量为:", len(contours))
    output = np.zeros((aux.shape[0], aux.shape[1], 3), np.uint8)
    for i in range(len(contours)):
        cv2.drawContours(
            output,
            contours,
            i,
            (np.random.randint(0, 255),
             np.random.randint(0, 255),
             np.random.randint(0, 255)), 2)
    return output
# 读取图片
img = cv2.imread('img.png', 0)
pre_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # 二值化函数
# 第一步:中值滤波
# 中值滤波
img1 = cv2.medianBlur(img, 3)
# 显示并保存图片
cv2.imshow('gray', img)
cv2.imshow('medianBlur', img1)
cv2.imwrite('medianBlur.jpg', img1)
# 第二步:图像二值化
# 图像二值化
ret, img2 = cv2.threshold(img1, 140, 255, 0, img1)  # 二值化函数
# 显示并保存图片
cv2.imshow('threshold', img2)
cv2.imwrite('threshold.jpg', img2)
# 第三步:膨胀图像
dilate_kernel = np.ones((3, 3), np.uint8)
img3 = cv2.dilate(img2, dilate_kernel)
# 显示并保存图片
cv2.imshow('dilate', img3)
cv2.imwrite('dilate.jpg', img3)
# 第四步:腐蚀图像
erode_kernel = np.ones((7, 7), np.uint8)
img4 = cv2.erode(img3, erode_kernel)
# 显示并保存图片
cv2.imshow('erode', img4)
cv2.imwrite('erode.jpg', img4)
# 第五步:计算光影背景
img5 = calculateLightPattern(img4)
# 显示并保存图片
cv2.imshow('LightPattern', img5)
cv2.imwrite('LightPattern.jpg', img5)
# 第六步:移除背景
aux = removeLight(img4, img5, 1)
# 显示并保存图片
cv2.imshow('removeLight', aux)
cv2.imwrite('removeLight.jpg', aux)
# 第七步:检测轮廓
output1 = ConnectedComponents(aux)
output2 = ConnectedComponentsStats(aux)
output3 = FindContours(aux)
# 显示并保存图片
cv2.imshow('connectedComponents', output1)
cv2.imwrite('connectedComponents.jpg', output1)
cv2.imshow('connectedComponentsWithStats', output2)
cv2.imwrite('connectedComponentsWithStats.jpg', output2)
cv2.imshow('findContours', output3)
cv2.imwrite('findContours.jpg', output3)
cv2.waitKey(0)

四、结果

1.中值滤波

2.图像二值化

3.膨胀图像

4.腐蚀图像

5.计算光影背景

6.移除背景

7.检测染色体

(1)connectedComponents.jpg

(2)connectedComponentsWithStats.jpg

(3)findContours.jpg

染色体个数为46


到此这篇关于“Python数字图像处理操作及实例是什么”的文章就介绍到这了,更多相关内容请搜索群英网络以前的文章或继续浏览下面的相关文章,希望大家以后多多支持群英网络!
群英智防CDN,智能加速解决方案

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服