Python中怎么画散点密度图,有多少方法

Admin 2022-08-11 群英技术资讯 601 次浏览

关于“Python中怎么画散点密度图,有多少方法”的知识有一些人不是很理解,对此小编给大家总结了相关内容,具有一定的参考借鉴价值,而且易于学习与理解,希望能对大家有所帮助,有这个方面学习需要的朋友就继续往下看吧。


方式一
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import gaussian_kde
from mpl_toolkits.axes_grid1 import make_axes_locatable
from matplotlib import rcParams
config = {"font.family":'Times New Roman',"font.size": 16,"mathtext.fontset":'stix'}
rcParams.update(config)
# 读取数据
import pandas as pd
filename=r'F:/Rpython/lp37/testdata.xlsx'
df2=pd.read_excel(filename)#读取文件
x=df2['data1'].values
y=df2['data2'].values
xy = np.vstack([x,y])
z = gaussian_kde(xy)(xy)
idx = z.argsort()
x, y, z = x[idx], y[idx], z[idx]
fig,ax=plt.subplots(figsize=(12,9),dpi=100)
scatter=ax.scatter(x,y,marker='o',c=z,edgecolors='',s=15,label='LST',cmap='Spectral_r')
cbar=plt.colorbar(scatter,shrink=1,orientation='vertical',extend='both',pad=0.015,aspect=30,label='frequency') #orientation='horizontal'
font3={'family':'SimHei','size':16,'color':'k'}
plt.ylabel("估计值",fontdict=font3)
plt.xlabel("预测值",fontdict=font3)
plt.savefig('F:/Rpython/lp37/plot70.png',dpi=800,bbox_inches='tight',pad_inches=0)
plt.show()

方式二

from statistics import mean
import matplotlib.pyplot as plt
from sklearn.metrics import explained_variance_score,r2_score,median_absolute_error,mean_squared_error,mean_absolute_error
from scipy import stats
import numpy as np
from matplotlib import rcParams
config = {"font.family":'Times New Roman',"font.size": 16,"mathtext.fontset":'stix'}
rcParams.update(config)
def scatter_out_1(x,y): ## x,y为两个需要做对比分析的两个量。
    # ==========计算评价指标==========
    BIAS = mean(x - y)
    MSE = mean_squared_error(x, y)
    RMSE = np.power(MSE, 0.5)
    R2 = r2_score(x, y)
    MAE = mean_absolute_error(x, y)
    EV = explained_variance_score(x, y)
    print('==========算法评价指标==========')
    print('BIAS:', '%.3f' % (BIAS))
    print('Explained Variance(EV):', '%.3f' % (EV))
    print('Mean Absolute Error(MAE):', '%.3f' % (MAE))
    print('Mean squared error(MSE):', '%.3f' % (MSE))
    print('Root Mean Squard Error(RMSE):', '%.3f' % (RMSE))
    print('R_squared:', '%.3f' % (R2))
    # ===========Calculate the point density==========
    xy = np.vstack([x, y])
    z = stats.gaussian_kde(xy)(xy)
    # ===========Sort the points by density, so that the densest points are plotted last===========
    idx = z.argsort()
    x, y, z = x[idx], y[idx], z[idx]
    def best_fit_slope_and_intercept(xs, ys):
        m = (((mean(xs) * mean(ys)) - mean(xs * ys)) / ((mean(xs) * mean(xs)) - mean(xs * xs)))
        b = mean(ys) - m * mean(xs)
        return m, b
    m, b = best_fit_slope_and_intercept(x, y)
    regression_line = []
    for a in x:
        regression_line.append((m * a) + b)
    fig,ax=plt.subplots(figsize=(12,9),dpi=600)
    scatter=ax.scatter(x,y,marker='o',c=z*100,edgecolors='',s=15,label='LST',cmap='Spectral_r')
    cbar=plt.colorbar(scatter,shrink=1,orientation='vertical',extend='both',pad=0.015,aspect=30,label='frequency')
    plt.plot([0,25],[0,25],'black',lw=1.5)  # 画的1:1线,线的颜色为black,线宽为0.8
    plt.plot(x,regression_line,'red',lw=1.5)      # 预测与实测数据之间的回归线
    plt.axis([0,25,0,25])  # 设置线的范围
    plt.xlabel('OBS',family = 'Times New Roman')
    plt.ylabel('PRE',family = 'Times New Roman')
    plt.xticks(fontproperties='Times New Roman')
    plt.yticks(fontproperties='Times New Roman')
    plt.text(1,24, '$N=%.f$' % len(y), family = 'Times New Roman') # text的位置需要根据x,y的大小范围进行调整。
    plt.text(1,23, '$R^2=%.3f$' % R2, family = 'Times New Roman')
    plt.text(1,22, '$BIAS=%.4f$' % BIAS, family = 'Times New Roman')
    plt.text(1,21, '$RMSE=%.3f$' % RMSE, family = 'Times New Roman')
    plt.xlim(0,25)                                  # 设置x坐标轴的显示范围
    plt.ylim(0,25)                                  # 设置y坐标轴的显示范围
    plt.savefig('F:/Rpython/lp37/plot71.png',dpi=800,bbox_inches='tight',pad_inches=0)
    plt.show()

方式三

import pandas as pd
import numpy as np
from scipy import optimize
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.colors import Normalize
from scipy.stats import gaussian_kde
from matplotlib import rcParams
config={"font.family":'Times New Roman',"font.size":16,"mathtext.fontset":'stix'}
rcParams.update(config)
# 读取数据
filename=r'F:/Rpython/lp37/testdata.xlsx'
df2=pd.read_excel(filename)#读取文件
x=df2['data1'].values.ravel()
y=df2['data2'].values.ravel()
N = len(df2['data1'])
#绘制拟合线
x2 = np.linspace(-10,30)
y2 = x2
def f_1(x,A,B):
    return A*x + B
A1,B1 = optimize.curve_fit(f_1,x,y)[0]
y3 = A1*x + B1
# Calculate the point density
xy = np.vstack([x,y])
z = gaussian_kde(xy)(xy)
norm = Normalize(vmin = np.min(z), vmax = np.max(z))
#开始绘图
fig,ax=plt.subplots(figsize=(12,9),dpi=600)
scatter=ax.scatter(x,y,marker='o',c=z*100,edgecolors='',s=15,label='LST',cmap='Spectral_r')
cbar=plt.colorbar(scatter,shrink=1,orientation='vertical',extend='both',pad=0.015,aspect=30,label='frequency')
cbar.ax.locator_params(nbins=8)
cbar.ax.set_yticklabels([0.005,0.010,0.015,0.020,0.025,0.030,0.035])#0,0.005,0.010,0.015,0.020,0.025,0.030,0.035
ax.plot(x2,y2,color='k',linewidth=1.5,linestyle='--')
ax.plot(x,y3,color='r',linewidth=2,linestyle='-')
fontdict1 = {"size":16,"color":"k",'family':'Times New Roman'}
ax.set_xlabel("PRE",fontdict=fontdict1)
ax.set_ylabel("OBS",fontdict=fontdict1)
# ax.grid(True)
ax.set_xlim((0,25))
ax.set_ylim((0,25))
ax.set_xticks(np.arange(0,25.1,step=5))
ax.set_yticks(np.arange(0,25.1,step=5))
plt.savefig('F:/Rpython/lp37/plot72.png',dpi=800,bbox_inches='tight',pad_inches=0)
plt.show()


以上就是关于“Python中怎么画散点密度图,有多少方法”的相关知识,感谢各位的阅读,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注群英网络,小编每天都会为大家更新不同的知识。
群英智防CDN,智能加速解决方案

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服