GroupBy对象如何使用,步骤及原理如何理解

Admin 2022-08-11 群英技术资讯 471 次浏览

这篇文章主要介绍“GroupBy对象如何使用,步骤及原理如何理解”,有一些人在GroupBy对象如何使用,步骤及原理如何理解的问题上存在疑惑,接下来小编就给大家来介绍一下相关的内容,希望对大家解答有帮助,有这个方面学习需要的朋友就继续往下看吧。




今天,我们将探讨如何在 Python 的 Pandas 库中创建 GroupBy 对象以及该对象的工作原理。我们将详细了解分组过程的每个步骤,可以将哪些方法应用于 GroupBy 对象上,以及我们可以从中提取哪些有用信息

不要再观望了,一起学起来吧

使用 Groupby 三个步骤

首先我们要知道,任何 groupby 过程都涉及以下 3 个步骤的某种组合:

  • 根据定义的标准将原始对象分成组
  • 对每个组应用某些函数
  • 整合结果

让我先来大致浏览下今天用到的测试数据集

import pandas as pd
import numpy as np

pd.set_option('max_columns', None)

df = pd.read_csv('complete.csv')
df = df[['awardYear', 'category', 'prizeAmount', 'prizeAmountAdjusted', 'name', 'gender', 'birth_continent']]
df.head()

Output:

    awardYear    category    prizeAmount    prizeAmountAdjusted    name    gender    birth_continent
0    2001    Economic Sciences    10000000    12295082    A. Michael Spence    male    North America
1    1975    Physics    630000    3404179    Aage N. Bohr    male    Europe
2    2004    Chemistry    10000000    11762861    Aaron Ciechanover    male    Asia
3    1982    Chemistry    1150000    3102518    Aaron Klug    male    Europe
4    1979    Physics    800000    2988048    Abdus Salam    male    Asia

将原始对象拆分为组

在这个阶段,我们调用 pandas DataFrame.groupby() 函数。我们使用它根据预定义的标准将数据分组,沿行(默认情况下,axis=0)或列(axis=1)。换句话说,此函数将标签映射到组的名称。

例如,在我们的案例中,我们可以按奖项类别对诺贝尔奖的数据进行分组:

grouped = df.groupby('category')

也可以使用多个列来执行数据分组,传递一个列列表即可。让我们首先按奖项类别对我们的数据进行分组,然后在每个创建的组中,我们将根据获奖年份应用额外的分组:

grouped_category_year = df.groupby(['category', 'awardYear'])

现在,如果我们尝试打印刚刚创建的两个 GroupBy 对象之一,我们实际上将看不到任何组:

print(grouped)

Output:

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x0000026083789DF0>

我们要注意的是,创建 GroupBy 对象成功与否,只检查我们是否通过了正确的映射;在我们显式地对该对象使用某些方法或提取其某些属性之前,都不会真正执行拆分-应用-组合链的任何操作

为了简要检查生成的 GroupBy 对象并检查组的拆分方式,我们可以从中提取组或索引属性。它们都返回一个字典,其中键是创建的组,值是原始 DataFrame 中每个组的实例的轴标签列表(对于组属性)或索引(对于索引属性):

grouped.indices

Output:

{'Chemistry': array([  2,   3,   7,   9,  10,  11,  13,  14,  15,  17,  19,  39,  62,
         64,  66,  71,  75,  80,  81,  86,  92, 104, 107, 112, 129, 135,
        153, 169, 175, 178, 181, 188, 197, 199, 203, 210, 215, 223, 227,
        239, 247, 249, 258, 264, 265, 268, 272, 274, 280, 282, 284, 289,
        296, 298, 310, 311, 317, 318, 337, 341, 343, 348, 352, 357, 362,
        365, 366, 372, 374, 384, 394, 395, 396, 415, 416, 419, 434, 440,
        442, 444, 446, 448, 450, 455, 456, 459, 461, 463, 465, 469, 475,
        504, 505, 508, 518, 522, 523, 524, 539, 549, 558, 559, 563, 567,
        571, 572, 585, 591, 596, 599, 627, 630, 632, 641, 643, 644, 648,
        659, 661, 666, 667, 668, 671, 673, 679, 681, 686, 713, 715, 717,
        719, 720, 722, 723, 725, 726, 729, 732, 738, 742, 744, 746, 751,
        756, 759, 763, 766, 773, 776, 798, 810, 813, 814, 817, 827, 828,
        829, 832, 839, 848, 853, 855, 862, 866, 880, 885, 886, 888, 889,
        892, 894, 897, 902, 904, 914, 915, 920, 921, 922, 940, 941, 943,
        946, 947], dtype=int64),
 'Economic Sciences': array([  0,   5,  45,  46,  58,  90,  96, 139, 140, 145, 152, 156, 157,
        180, 187, 193, 207, 219, 231, 232, 246, 250, 269, 279, 283, 295,
        305, 324, 346, 369, 418, 422, 425, 426, 430, 432, 438, 458, 467,
        476, 485, 510, 525, 527, 537, 538, 546, 580, 594, 595, 605, 611,
        636, 637, 657, 669, 670, 678, 700, 708, 716, 724, 734, 737, 739,
        745, 747, 749, 750, 753, 758, 767, 800, 805, 854, 856, 860, 864,
        871, 882, 896, 912, 916, 924], dtype=int64),
 'Literature': array([ 21,  31,  40,  49,  52,  98, 100, 101, 102, 111, 115, 142, 149,
        159, 170, 177, 201, 202, 220, 221, 233, 235, 237, 253, 257, 259,
        275, 277, 278, 286, 312, 315, 316, 321, 326, 333, 345, 347, 350,
        355, 359, 364, 370, 373, 385, 397, 400, 403, 406, 411, 435, 439,
        441, 454, 468, 479, 480, 482, 483, 492, 501, 506, 511, 516, 556,
        569, 581, 602, 604, 606, 613, 614, 618, 631, 633, 635, 640, 652,
        653, 655, 656, 665, 675, 683, 699, 761, 765, 771, 774, 777, 779,
        780, 784, 786, 788, 796, 799, 803, 836, 840, 842, 850, 861, 867,
        868, 878, 881, 883, 910, 917, 919, 927, 928, 929, 930, 936],
       dtype=int64),
 'Peace': array([  6,  12,  16,  25,  26,  27,  34,  36,  44,  47,  48,  54,  61,
         65,  72,  78,  79,  82,  95,  99, 116, 119, 120, 126, 137, 146,
        151, 166, 167, 171, 200, 204, 205, 206, 209, 213, 225, 236, 240,
        244, 255, 260, 266, 267, 270, 287, 303, 320, 329, 356, 360, 361,
        377, 386, 387, 388, 389, 390, 391, 392, 393, 433, 447, 449, 471,
        477, 481, 489, 491, 500, 512, 514, 517, 528, 529, 530, 533, 534,
        540, 542, 544, 545, 547, 553, 555, 560, 562, 574, 578, 590, 593,
        603, 607, 608, 609, 612, 615, 616, 617, 619, 620, 628, 634, 639,
        642, 664, 677, 688, 697, 703, 705, 710, 727, 736, 787, 793, 795,
        806, 823, 846, 847, 852, 865, 875, 876, 877, 895, 926, 934, 935,
        937, 944, 948, 949], dtype=int64),
 'Physics': array([  1,   4,   8,  20,  23,  24,  30,  32,  38,  51,  59,  60,  67,
         68,  69,  70,  74,  84,  89,  97, 103, 105, 108, 109, 114, 117,
        118, 122, 125, 127, 128, 130, 133, 141, 143, 144, 155, 162, 163,
        164, 165, 168, 173, 174, 176, 179, 183, 195, 212, 214, 216, 222,
        224, 228, 230, 234, 238, 241, 243, 251, 256, 263, 271, 276, 291,
        292, 297, 301, 306, 307, 308, 323, 327, 328, 330, 335, 336, 338,
        349, 351, 353, 354, 363, 367, 375, 376, 378, 381, 382, 398, 399,
        402, 404, 405, 408, 410, 412, 413, 420, 421, 424, 428, 429, 436,
        445, 451, 453, 457, 460, 462, 470, 472, 487, 495, 498, 499, 509,
        513, 515, 521, 526, 532, 535, 536, 541, 548, 550, 552, 557, 561,
        564, 565, 566, 573, 576, 577, 579, 583, 586, 588, 592, 601, 610,
        621, 622, 623, 629, 647, 650, 651, 654, 658, 674, 676, 682, 684,
        690, 691, 693, 694, 695, 696, 698, 702, 707, 711, 714, 721, 730,
        731, 735, 743, 752, 755, 770, 772, 775, 781, 785, 790, 792, 797,
        801, 802, 808, 822, 833, 834, 835, 844, 851, 870, 872, 879, 884,
        887, 890, 893, 900, 901, 903, 905, 907, 908, 909, 913, 925, 931,
        932, 933, 938, 942, 945], dtype=int64),
 'Physiology or Medicine': array([ 18,  22,  28,  29,  33,  35,  37,  41,  42,  43,  50,  53,  55,
         56,  57,  63,  73,  76,  77,  83,  85,  87,  88,  91,  93,  94,
        106, 110, 113, 121, 123, 124, 131, 132, 134, 136, 138, 147, 148,
        150, 154, 158, 160, 161, 172, 182, 184, 185, 186, 189, 190, 191,
        192, 194, 196, 198, 208, 211, 217, 218, 226, 229, 242, 245, 248,
        252, 254, 261, 262, 273, 281, 285, 288, 290, 293, 294, 299, 300,
        302, 304, 309, 313, 314, 319, 322, 325, 331, 332, 334, 339, 340,
        342, 344, 358, 368, 371, 379, 380, 383, 401, 407, 409, 414, 417,
        423, 427, 431, 437, 443, 452, 464, 466, 473, 474, 478, 484, 486,
        488, 490, 493, 494, 496, 497, 502, 503, 507, 519, 520, 531, 543,
        551, 554, 568, 570, 575, 582, 584, 587, 589, 597, 598, 600, 624,
        625, 626, 638, 645, 646, 649, 660, 662, 663, 672, 680, 685, 687,
        689, 692, 701, 704, 706, 709, 712, 718, 728, 733, 740, 741, 748,
        754, 757, 760, 762, 764, 768, 769, 778, 782, 783, 789, 791, 794,
        804, 807, 809, 811, 812, 815, 816, 818, 819, 820, 821, 824, 825,
        826, 830, 831, 837, 838, 841, 843, 845, 849, 857, 858, 859, 863,
        869, 873, 874, 891, 898, 899, 906, 911, 918, 923, 939], dtype=int64)}

要查找 GroupBy 对象中的组数,我们可以从中提取 ngroups 属性或调用 Python 标准库的 len 函数:

print(grouped.ngroups)
print(len(grouped))

Output:

6
6

如果我们需要可视化每个组的所有或部分条目,那么可以遍历 GroupBy 对象:

for name, entries in grouped:
    print(f'First 2 entries for the "{name}" category:')
    print(30*'-')
    print(entries.head(2), '\n\n')

Output:

First 2 entries for the "Chemistry" category:
------------------------------
   awardYear   category  prizeAmount  prizeAmountAdjusted               name  \
2       2004  Chemistry     10000000             11762861  Aaron Ciechanover   
3       1982  Chemistry      1150000              3102518         Aaron Klug   

  gender birth_continent  
2   male            Asia  
3   male          Europe   

First 2 entries for the "Economic Sciences" category:
------------------------------
   awardYear           category  prizeAmount  prizeAmountAdjusted  \
0       2001  Economic Sciences     10000000             12295082   
5       2019  Economic Sciences      9000000              9000000   

                name gender birth_continent  
0  A. Michael Spence   male   North America  
5   Abhijit Banerjee   male            Asia   

First 2 entries for the "Literature" category:
------------------------------
    awardYear    category  prizeAmount  prizeAmountAdjusted  \
21       1957  Literature       208629              2697789   
31       1970  Literature       400000              3177966   

                     name gender birth_continent  
21           Albert Camus   male          Africa  
31  Alexandr Solzhenitsyn   male          Europe   

First 2 entries for the "Peace" category:
------------------------------
    awardYear category  prizeAmount  prizeAmountAdjusted  \
6        2019    Peace      9000000              9000000   
12       1980    Peace       880000              2889667   

                     name gender birth_continent  
6          Abiy Ahmed Ali   male          Africa  
12  Adolfo Pérez Esquivel   male   South America   

First 2 entries for the "Physics" category:
------------------------------
   awardYear category  prizeAmount  prizeAmountAdjusted          name gender  \
1       1975  Physics       630000              3404179  Aage N. Bohr   male   
4       1979  Physics       800000              2988048   Abdus Salam   male   

  birth_continent  
1          Europe  
4            Asia   

First 2 entries for the "Physiology or Medicine" category:
------------------------------
    awardYear                category  prizeAmount  prizeAmountAdjusted  \
18       1963  Physiology or Medicine       265000              2839286   
22       1974  Physiology or Medicine       550000              3263449   

             name gender birth_continent  
18   Alan Hodgkin   male          Europe  
22  Albert Claude   male          Europe

相反,如果我们想以 DataFrame 的形式选择单个组,我们应该在 GroupBy 对象上使用 get_group() 方法:

grouped.get_group('Economic Sciences')

Output:

    awardYear    category    prizeAmount    prizeAmountAdjusted    name    gender    birth_continent
0    2001    Economic Sciences    10000000    12295082    A. Michael Spence    male    North America
5    2019    Economic Sciences    9000000    9000000    Abhijit Banerjee    male    Asia
45    2012    Economic Sciences    8000000    8361204    Alvin E. Roth    male    North America
46    1998    Economic Sciences    7600000    9713701    Amartya Sen    male    Asia
58    2015    Economic Sciences    8000000    8384572    Angus Deaton    male    Europe
…    …    …    …    …    …    …    …
882    2002    Economic Sciences    10000000    12034660    Vernon L. Smith    male    North America
896    1973    Economic Sciences    510000    3331882    Wassily Leontief    male    Europe
912    2018    Economic Sciences    9000000    9000000    William D. Nordhaus    male    North America
916    1990    Economic Sciences    4000000    6329114    William F. Sharpe    male    North America
924    1996    Economic Sciences    7400000    9490424    William Vickrey    male    North America

按组应用函数

在拆分原始数据并检查结果组之后,我们可以对每个组执行以下操作之一或其组合:

  • Aggregation(聚合):计算每个组的汇总统计量(例如,组大小、平均值、中位数或总和)并为许多数据点输出单个数字
  • Transformation(变换):按组进行一些操作,例如计算每个组的z-score
  • Filtration(过滤):根据预定义的条件拒绝某些组,例如组大小、平均值、中位数或总和,还可以包括从每个组中过滤掉特定的行

Aggregation

要聚合 GroupBy 对象的数据(即按组计算汇总统计量),我们可以在对象上使用 agg() 方法:

# Showing only 1 decimal for all float numbers
pd.options.display.float_format = '{:.1f}'.format

grouped.agg(np.mean)

Output:

    awardYear    prizeAmount    prizeAmountAdjusted
category            
Chemistry    1972.3    3629279.4    6257868.1
Economic Sciences    1996.1    6105845.2    7837779.2
Literature    1960.9    2493811.2    5598256.3
Peace    1964.5    3124879.2    6163906.9
Physics    1971.1    3407938.6    6086978.2
Physiology or Medicine    1970.4    3072972.9    5738300.7

上面的代码生成一个 DataFrame,其中组名作为其新索引,每个数字列的平均值作为分组

我们可以直接在 GroupBy 对象上应用其他相应的 Pandas 方法,而不仅仅是使用 agg() 方法。最常用的方法是 mean()median()mode()sum()size()count()min()max()std()var()(计算每个的方差 group)、describe()(按组输出描述性统计信息)和 nunique()(给出每个组中唯一值的数量)

grouped.sum()

Output:

    awardYear    prizeAmount    prizeAmountAdjusted
category            
Chemistry    362912    667787418    1151447726
Economic Sciences    167674    512891000    658373449
Literature    227468    289282102    649397731
Peace    263248    418733807    825963521
Physics    419837    725890928    1296526352
Physiology or Medicine    431508    672981066    1256687857

通常情况下我们只对某些特定列或列的统计信息感兴趣,因此我们需要指定它们。在上面的例子中,我们绝对不想总结所有年份,相应的我们可能希望按奖品类别对奖品价值求和。为此我们可以选择 GroupBy 对象的 PrizeAmountAdjusted 列,就像我们选择 DataFrame 的列,然后对其应用 sum() 函数:

grouped['prizeAmountAdjusted'].sum()

Output:

category
Chemistry                 1151447726
Economic Sciences          658373449
Literature                 649397731
Peace                      825963521
Physics                   1296526352
Physiology or Medicine    1256687857
Name: prizeAmountAdjusted, dtype: int64

对于上面的代码片段,我们可以在选择必要的列之前使用对 GroupBy 对象应用函数的等效语法:grouped.sum()['prizeAmountAdjusted']。但是前面的语法更可取,因为它的性能更好,尤其是在大型数据集上,效果更为明显

如果我们需要聚合两列或更多列的数据,我们使用双方括号:

grouped[['prizeAmount', 'prizeAmountAdjusted']].sum()

Output:

    prizeAmount    prizeAmountAdjusted
category        
Chemistry    667787418    1151447726
Economic Sciences    512891000    658373449
Literature    289282102    649397731
Peace    418733807    825963521
Physics    725890928    1296526352
Physiology or Medicine    672981066    1256687857

可以一次将多个函数应用于 GroupBy 对象的一列或多列。为此我们再次需要 agg() 方法和感兴趣的函数列表:

grouped[['prizeAmount', 'prizeAmountAdjusted']].agg([np.sum, np.mean, np.std])

Output:

    prizeAmount    prizeAmountAdjusted
sum    mean    std    sum    mean    std
category                        
Chemistry    667787418    3629279.4    4070588.4    1151447726    6257868.1    3276027.2
Economic Sciences    512891000    6105845.2    3787630.1    658373449    7837779.2    3313153.2
Literature    289282102    2493811.2    3653734.0    649397731    5598256.3    3029512.1
Peace    418733807    3124879.2    3934390.9    825963521    6163906.9    3189886.1
Physics    725890928    3407938.6    4013073.0    1296526352    6086978.2    3294268.5
Physiology or Medicine    672981066    3072972.9    3898539.3    1256687857    5738300.7    3241781.0

此外,我们可以考虑通过传递字典将不同的聚合函数应用于 GroupBy 对象的不同列:

grouped.agg({'prizeAmount': [np.sum, np.size], 'prizeAmountAdjusted': np.mean})

Output:

    prizeAmount    prizeAmountAdjusted
sum    size    mean
category            
Chemistry    667787418    184    6257868.1
Economic Sciences    512891000    84    7837779.2
Literature    289282102    116    5598256.3
Peace    418733807    134    6163906.9
Physics    725890928    213    6086978.2
Physiology or Medicine    672981066    219    5738300.7

Transformation

与聚合方法不同,转换方法返回一个新的 DataFrame,其形状和索引与原始 DataFrame 相同,但具有转换后的各个值。这里需要注意的是,transformation 一定不能修改原始 DataFrame 中的任何值,也就是这些操作不能原地执行

转换 GroupBy 对象数据的最常见的 Pandas 方法是 transform()。例如它可以帮助计算每个组的 z-score:

grouped[['prizeAmount', 'prizeAmountAdjusted']].transform(lambda x: (x - x.mean()) / x.std())

Output:

    prizeAmount    prizeAmountAdjusted
0    1.0    1.3
1    -0.7    -0.8
2    1.6    1.7
3    -0.6    -1.0
4    -0.6    -0.9
…    …    …
945    -0.7    -0.8
946    -0.8    -1.1
947    -0.9    0.3
948    -0.5    -1.0
949    -0.7    -1.0

使用转换方法,我们还可以用组均值、中位数、众数或任何其他值替换缺失数据:

Output:

0        male
1        male
2        male
3        male
4        male
        ...  
945      male
946      male
947    female
948      male
949      male
Name: gender, Length: 950, dtype: object

我们当然还可以使用其他一些 Pandas 方法来转换 GroupBy 对象的数据:bfill()ffill()diff()pct_change()rank()shift()quantile()

Filtration

过滤方法根据预定义的条件从每个组中丢弃组或特定行,并返回原始数据的子集。例如我们可能希望只保留所有组中某个列的值,其中该列的组均值大于预定义值。在我们的 DataFrame 的情况下,让我们过滤掉所有组均值小于 7,000,000 的prizeAmountAdjusted 列,并在输出中仅保留该列:

grouped['prizeAmountAdjusted'].filter(lambda x: x.mean() > 7000000)

Output:

0      12295082
5       9000000
45      8361204
46      9713701
58      8384572
         ...   
882    12034660
896     3331882
912     9000000
916     6329114
924     9490424
Name: prizeAmountAdjusted, Length: 84, dtype: int64

另一个例子是过滤掉具有超过一定数量元素的组:

grouped['prizeAmountAdjusted'].filter(lambda x: len(x) < 100)

Output:

0      12295082
5       9000000
45      8361204
46      9713701
58      8384572
         ...   
882    12034660
896     3331882
912     9000000
916     6329114
924     9490424
Name: prizeAmountAdjusted, Length: 84, dtype: int64

在上述两个操作中,我们使用了 filter() 方法,将 lambda 函数作为参数传递。这样的函数,应用于整个组,根据该组与预定义统计条件的比较结果返回 True 或 False。换句话说,filter()方法中的函数决定了哪些组保留在新的 DataFrame 中

除了过滤掉整个组之外,还可以从每个组中丢弃某些行。这里有一些有用的方法是 first()last() 和 nth()。将其中一个应用于 GroupBy 对象会相应地返回每个组的第一个/最后一个/第 n 个条目:

grouped.last()

Output:

    awardYear    prizeAmount    prizeAmountAdjusted    name    gender    birth_continent
category                        
Chemistry    1911    140695    7327865    Marie Curie    female    Europe
Economic Sciences    1996    7400000    9490424    William Vickrey    male    North America
Literature    1968    350000    3052326    Yasunari Kawabata    male    Asia
Peace    1963    265000    2839286    International Committee of the Red Cross    male    Asia
Physics    1972    480000    3345725    John Bardeen    male    North America
Physiology or Medicine    2016    8000000    8301051    Yoshinori Ohsumi    male    Asia

对于 nth() 方法,我们必须传递表示要为每个组返回的条目索引的整数:

grouped.nth(1)

Output:

    awardYear    prizeAmount    prizeAmountAdjusted    name    gender    birth_continent
category                        
Chemistry    1982    1150000    3102518    Aaron Klug    male    Europe
Economic Sciences    2019    9000000    9000000    Abhijit Banerjee    male    Asia
Literature    1970    400000    3177966    Alexandr Solzhenitsyn    male    Europe
Peace    1980    880000    2889667    Adolfo Pérez Esquivel    male    South America
Physics    1979    800000    2988048    Abdus Salam    male    Asia
Physiology or Medicine    1974    550000    3263449    Albert Claude    male    Europe

上面的代码收集了所有组的第二个条目

另外两个过滤每个组中的行的方法是 head() 和 tail(),分别返回每个组的第一/最后 n 行(默认为 5):

grouped.head(3)

Output:

    awardYear    category    prizeAmount    prizeAmountAdjusted    name    gender    birth_continent
0    2001    Economic Sciences    10000000    12295082    A. Michael Spence    male    North America
1    1975    Physics    630000    3404179    Aage N. Bohr    male    Europe
2    2004    Chemistry    10000000    11762861    Aaron Ciechanover    male    Asia
3    1982    Chemistry    1150000    3102518    Aaron Klug    male    Europe
4    1979    Physics    800000    2988048    Abdus Salam    male    Asia
5    2019    Economic Sciences    9000000    9000000    Abhijit Banerjee    male    Asia
6    2019    Peace    9000000    9000000    Abiy Ahmed Ali    male    Africa
7    2009    Chemistry    10000000    10958504    Ada E. Yonath    female    Asia
8    2011    Physics    10000000    10545557    Adam G. Riess    male    North America
12    1980    Peace    880000    2889667    Adolfo Pérez Esquivel    male    South America
16    2007    Peace    10000000    11301989    Al Gore    male    North America
18    1963    Physiology or Medicine    265000    2839286    Alan Hodgkin    male    Europe
21    1957    Literature    208629    2697789    Albert Camus    male    Africa
22    1974    Physiology or Medicine    550000    3263449    Albert Claude    male    Europe
28    1937    Physiology or Medicine    158463    4716161    Albert Szent-Györgyi    male    Europe
31    1970    Literature    400000    3177966    Alexandr Solzhenitsyn    male    Europe
40    2013    Literature    8000000    8365867    Alice Munro    female    North America
45    2012    Economic Sciences    8000000    8361204    Alvin E. Roth    male    North America

整合结果

split-apply-combine 链的最后一个阶段——合并结果——由Ppandas 在后台执行。它包括获取在 GroupBy 对象上执行的所有操作的输出并将它们重新组合在一起,生成新的数据结构,例如 Series 或 DataFrame。将此数据结构分配给一个变量,我们可以用它来解决其他任务

总结


感谢各位的阅读,以上就是“GroupBy对象如何使用,步骤及原理如何理解”的内容了,经过本文的学习后,相信大家对GroupBy对象如何使用,步骤及原理如何理解都有更深刻的体会了吧。这里是群英网络,小编将为大家推送更多相关知识点的文章,欢迎关注! 群英智防CDN,智能加速解决方案

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服