Pandas是如何实现筛选功能的,方法是什么
Admin 2022-08-10 群英技术资讯 294 次浏览
data=df.loc[2:5] #这里的[2:5]表示第3行到第5行内容,[]第一个起始是0,表示数据的第一行
data = df[(df['列名1']== ‘列值1')] # 多条件匹配时 data_many=df[(df['列名1']== ‘列值1')&(df['列名2']==‘列值2')] # 多值匹配时 data_many=df[df['列名1'] in [‘值1',‘值2',......]]
# 开头包含某值的模式匹配 cond=df['列名'].str.startswith('值') $ 中间包含某值的模式匹配 cond=df['列名'].str.contains('值')
# 筛选出基于两个值之间的数据: cond=df[(df['列名1']>‘列值1')&(df['列名1']<‘列值2')]
print(ridership_df.loc['05-05-11','R003']) # 或者 print(ridership_df.iloc[4,0]) # 结果: 1608
print(df.values)
import pandas as pd df = pd.DataFrame({'BoolCol': [1, 2, 3, 3, 4],'attr': [22, 33, 22, 44, 66]},index=[10,20,30,40,50]) print(df) a = df[(df.BoolCol==3)&(df.attr==22)].index.tolist() b = df[(df.BoolCol==3)&(df.attr==22)].index[0] c = df[(df.BoolCol==3)&(df.attr==22)].index.values print(a)
print(date_frame) # 打印完整显示的效果 print(date_frame.shape) # 获取df的行数、列数元祖 print(date_frame.head(2)) # 前2行 print(date_frame.tail(2)) # 后2行 print(date_frame.index.tolist()) # 只获取df的索引列表 print(date_frame.columns.tolist()) # 只获取df的列名列表 print(date_frame.values.tolist()) # 只获取df的所有值的列表(二维列表)
# 使用的前提是,dataframe的index和columns用的是数字,利用了drop()和range()函数。 DataFrame.drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise') # axis = 0,表示删除行; axis = 1 表示删除列。 # 想删除多行/列,用range即可,比如要删除前3行,drop(range(0,3),axis = 0(默认为零,可不写))即可。
import datetime import pandas as pd dictDate = {'date': ['2019-11-01 19:30', '2019-11-30 19:00']} df = pd.DataFrame(dictDate) df['datetime'] = pd.to_datetime(df['date']) df['today'] = df['datetime'].apply(lambda x: x.strftime('%Y%m%d')) df['tomorrow'] = (df['datetime'] + datetime.timedelta(days=1)).dt.strftime('%Y%m%d')
# pandas 的 apply() 函数可以作用于 Series 或者整个 DataFrame,功能也是自动遍历整个 Series 或者 DataFrame, 对每一个元素运行指定的函数。 def add_extra(nationality, extra): if nationality != "汉": return extra else: return 0 df['ExtraScore'] = df.Nationality.apply(add_extra, args=(5,)) df['ExtraScore'] = df.Nationality.apply(add_extra, extra=5) df['Extra'] = df.Nationality.apply(lambda n, extra : extra if n == '汉' else 0, args=(5,)) def add_extra2(nationaltiy, **kwargs): return kwargs[nationaltiy] df['Extra'] = df.Nationality.apply(add_extra2, 汉=0, 回=10, 藏=5)
import datetime import pandas as pd def f(x): x = str(x)[:8] if x !='n': gf = datetime.datetime.strptime(x, "%Y%m%d") x = gf.strftime("%Y-%m-%d") return x def f2(x): if str(x) not in [' ', 'nan']: dd = datetime.datetime.strptime(str(x), "%Y/%m/%d") x = dd.strftime("%Y-%m-%d") return x def test(): df = pd.DataFrame() df1 = pd.read_csv("600694_gf.csv") df2=pd.read_csv("600694.csv") df['date1'] =df2['DateTime'].map(f2) df['date2'] =df1['date'].map(f) df.to_csv('map.csv')
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
今天教大家如何利用python进行数值分析,文中有非常详细的代码示例,对正在学习python的小伙伴们很有帮助,需要的朋友可以参考下
轮廓可以简单认为成将连续的点(连着边界)连在一起的曲线,具有相同 的颜色或者灰度。轮廓在形状分析和物体的检测和识别中很有用。
训练用PyTorch编写的LSTM或RNN时,在loss.backward()上报错,千万别改成loss.backward(retain_graph=True),会导致显卡内存随着训练一直增加直到OOM:
这篇文章主要介绍了python实现进度条的多种实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
单目三维重建是根据单个摄像头的运动模拟双目视觉获得物体在空间中的三维视觉信息,下面这篇文章主要给大家介绍了关于如何基于python实现单目三维重建的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008