用Python画散点图和直方图的操作分别是什么

Admin 2022-08-09 群英技术资讯 477 次浏览

在实际应用中,我们有时候会遇到“用Python画散点图和直方图的操作分别是什么”这样的问题,我们该怎样来处理呢?下文给大家介绍了解决方法,希望这篇“用Python画散点图和直方图的操作分别是什么”文章能帮助大家解决问题。


   

一、绘制带趋势线的散点图

实现功能:

在散点图上添加趋势线(线性拟合线)反映两个变量是正相关、负相关或者无相关关系。

实现代码:

import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings(action='once')
plt.style.use('seaborn-whitegrid')
sns.set_style("whitegrid")
print(mpl.__version__)
print(sns.__version__)
def draw_scatter(file):
    # Import Data
    df = pd.read_csv(file)
    df_select = df.loc[df.cyl.isin([4, 8]), :]

    # Plot
    gridobj = sns.lmplot(
        x="displ",
        y="hwy",
        hue="cyl",
        data=df_select,
        height=7,
        aspect=1.6,
        palette='Set1',
        scatter_kws=dict(s=60, linewidths=.7, edgecolors='black'))
    # Decorations
    sns.set(style="whitegrid", font_scale=1.5)
    gridobj.set(xlim=(0.5, 7.5), ylim=(10, 50))
    gridobj.fig.set_size_inches(10, 6)
    plt.tight_layout()
    plt.title("Scatterplot with line of best fit grouped by number of cylinders")
    plt.show()
draw_scatter("F:\数据杂坛\datasets\mpg_ggplot2.csv")

实现效果:

在散点图上添加趋势线(线性拟合线)反映两个变量是正相关、负相关或者无相关关系。红蓝两组数据分别绘制出最佳的线性拟合线。

二、绘制边缘直方图

实现功能:

python绘制边缘直方图,用于展示X和Y之间的关系、及X和Y的单变量分布情况,常用于数据探索分析。

实现代码:

import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings(action='once')
plt.style.use('seaborn-whitegrid')
sns.set_style("whitegrid")
print(mpl.__version__)
print(sns.__version__)
def draw_Marginal_Histogram(file):
    # Import Data
    df = pd.read_csv(file)

    # Create Fig and gridspec
    fig = plt.figure(figsize=(10, 6), dpi=100)
    grid = plt.GridSpec(4, 4, hspace=0.5, wspace=0.2)
    # Define the axes
    ax_main = fig.add_subplot(grid[:-1, :-1])
    ax_right = fig.add_subplot(grid[:-1, -1], xticklabels=[], yticklabels=[])
    ax_bottom = fig.add_subplot(grid[-1, 0:-1], xticklabels=[], yticklabels=[])
    # Scatterplot on main ax
    ax_main.scatter('displ',
                    'hwy',
                    s=df.cty * 4,
                    c=df.manufacturer.astype('category').cat.codes,
                    alpha=.9,
                    data=df,
                    cmap="Set1",
                    edgecolors='gray',
                    linewidths=.5)
    # histogram on the right
    ax_bottom.hist(df.displ,
                   40,
                   histtype='stepfilled',
                   orientation='vertical',
                   color='#098154')
    ax_bottom.invert_yaxis()
    # histogram in the bottom
    ax_right.hist(df.hwy,
                  40,
                  histtype='stepfilled',
                  orientation='horizontal',
                  color='#098154')
    # Decorations
    ax_main.set(title='Scatterplot with Histograms \n displ vs hwy',
                xlabel='displ',
                ylabel='hwy')
    ax_main.title.set_fontsize(10)
    for item in ([ax_main.xaxis.label, ax_main.yaxis.label] +
                 ax_main.get_xticklabels() + ax_main.get_yticklabels()):
        item.set_fontsize(10)

    xlabels = ax_main.get_xticks().tolist()
    ax_main.set_xticklabels(xlabels)
    plt.show()
draw_Marginal_Histogram("F:\数据杂坛\datasets\mpg_ggplot2.csv")

实现效果:


“用Python画散点图和直方图的操作分别是什么”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业技术相关的知识可以关注群英网络网站,小编每天都会为大家更新不同的知识。 群英智防CDN,智能加速解决方案
标签: python散点图

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服