基于Opencv如何实现验证码识别,要点有哪些

Admin 2022-08-06 群英技术资讯 395 次浏览

这篇文章主要介绍“基于Opencv如何实现验证码识别,要点有哪些”,有一些人在基于Opencv如何实现验证码识别,要点有哪些的问题上存在疑惑,接下来小编就给大家来介绍一下相关的内容,希望对大家解答有帮助,有这个方面学习需要的朋友就继续往下看吧。


一、需要识别的内容

需要识别的验证码内容如下  验证码下载下载地址。

二、直接调用tesseract来完成识别(识别率很差)

识别的图片内容为:

在window系统钟打开cmd命令窗口,执行识别命令如下:

tesseract.exe 01.png output.txt -l eng

识别结果为:519}       该识别准确率远远达不到预期

三、训练数据样本,提升识别率

1、下载10份样本(样本数量越多,识别率越高),然后通过jTessBoxEditor来进行样本数据矫正(该步骤耗时较长)。

 2、打开 jTessBoxEditor,将所有的样本数据生成一个总的tif文件(tif就是所有图片的集合)。操作如下:

1)jTessBoxEditor->Tools->Merge TIFF

2 )全选所有的样本文件,之后生成的tif命名为 jtbnum.font.exp0.tif

3)进行数据识别调整,如下图:

 四、生成样本库字体

将所有的样本识别内容都调整正确后(调整的参数保存在jtbnum.font.exp0.box文件钟),我们需要将我们生成的样本文件封装成我们的 jtbnum.traineddata 字体库,生成方式如下:

1)创建 font_properties 文件,内容为 font 0 0 0 0 0

2)在同级目录创建 run.bat 文件 内容如下

rem 执行改批处理前先要目录下创建font_properties文件  
  
echo Run Tesseract for Training..  
tesseract.exe jtbnum.font.exp0.tif jtbnum.font.exp0 nobatch box.train  
  
echo Compute the Character Set..  
unicharset_extractor.exe jtbnum.font.exp0.box  
mftraining -F font_properties -U unicharset -O jtbnum.unicharset jtbnum.font.exp0.tr  
  
echo Clustering..  
cntraining.exe jtbnum.font.exp0.tr  
  
echo Rename Files..  
 
del jtbnum.normproto
rename normproto jtbnum.normproto
 
del jtbnum.inttemp
rename inttemp jtbnum.inttemp
 
del jtbnum.pffmtable
rename pffmtable jtbnum.pffmtable
 
del jtbnum.shapetable
rename shapetable jtbnum.shapetable
  
echo Create Tessdata..  
combine_tessdata.exe jtbnum. 
 
pause

 3)双击执行 run.bat 文件,系统执行完成后,将会生成 jtbnum.traineddata 文件。

4)将 jtbnum.traineddata 拷贝到tesseract安装目录下的tessdata文件夹下。

5)测试识别率:

 识别的图片内容为:

tesseract.exe 01.png output.txt -l jtbnum

 识别结果为:51915       识别结果已经很准确率,但是验证码图片中的杂质没有清除,导致会识别出多余内容来。

五、通过Opencv清除图片的多余杂质(Java实现)

if(!hasLoad){
            System.load(opencvPath+"/build/java/x64/opencv_java440.dll");
            hasLoad = true;
        }
 
        byte [] bytes = Base64Utils.decodeFromString(base64);
        String path = savePath+"/"+System.currentTimeMillis()+".png";
        try {
            OutputStream outputStream = new FileOutputStream(new File(path));
            outputStream.write(bytes);
            outputStream.flush();
            outputStream.close();
        } catch (Exception e) {
            e.printStackTrace();
        }
 
        Mat image0 = Imgcodecs.imread(path);
        Mat image1 = new Mat();
        //灰度处理
        Imgproc.cvtColor(image0, image1, Imgproc.COLOR_BGR2GRAY);
        Imgproc.adaptiveThreshold(image1,image1,255,Imgproc.ADAPTIVE_THRESH_MEAN_C,Imgproc.THRESH_BINARY,11, 2);
        Core.bitwise_not(image1,image1);
        Mat kernel = Imgproc.getStructuringElement(Imgproc.MORPH_RECT, new Size(2, 2), new Point(-1, -1));
        Mat temp = new Mat();
        Imgproc.erode(image1, temp, kernel);
        Imgproc.dilate(temp, temp, kernel);
        String newPath = path.substring(0,path.lastIndexOf(".")) +"_1.png";
        Imgcodecs.imwrite(newPath,temp);

图片处理结果如下(杂质已经清除):

5)测试识别率:

 识别的图片内容为:

tesseract.exe 01.png output.txt -l jtbnum

 识别结果为:5191       识别已经很精确


以上就是关于“基于Opencv如何实现验证码识别,要点有哪些”的相关知识,感谢各位的阅读,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注群英网络,小编每天都会为大家更新不同的知识。
群英智防CDN,智能加速解决方案

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服