Python全连接神经网络怎样实现,过程是什么

Admin 2022-08-06 群英技术资讯 297 次浏览

这篇文章主要讲解了“Python全连接神经网络怎样实现,过程是什么”,文中的讲解内容简单、清晰、详细,对大家学习或是工作可能会有一定的帮助,希望大家阅读完这篇文章能有所收获。下面就请大家跟着小编的思路一起来学习一下吧。


前言

在这篇文章中,准备用 Python 从头开始实现一个全连接的神经网络。你可能会问,为什么需要自己实现,有很多库和框架可以为我们做这件事,比如 Tensorflow、Pytorch 等。这里只想说只有自己亲手实现了,才是自己的。

想到今天自己从接触到从事与神经网络相关工作已经多少 2、3 年了,其中也尝试用 tensorflow 或 pytorch 框架去实现一些经典网络。不过对于反向传播背后机制还是比较模糊。

梯度

梯度是函数上升最快方向,最快的方向也就是说这个方向函数形状很陡峭,那么也是函数下降最快的方向。

虽然关于一些理论、梯度消失和结点饱和可以输出一个 1、2、3 但是深究还是没有底气,毕竟没有自己动手去实现过一个反向传播和完整训练过程。所以感觉还是浮在表面,知其所以然而。

因为最近有一段空闲时间、所以利用这段休息时间将要把这部分知识整理一下、深入了解了解

类型 符号 说明 表达式 维度
标量 n^LnL 表示第 L 层神经元的数量    
向量 B^LBL 表示第 L 层偏置   n^L \times 1nL×1
矩阵 W^LWL 表示第 L 层的权重   n^L \times n^LnL×nL
向量 Z^LZL 表示第 L 层输入到激活函数的值 Z^L=W^LA^{(L-1)} + B^LZL=WLA(L−1)+BL n^L \times 1nL×1
向量 A^LAL 表示第 L 层输出值 A^L = \sigma(Z^L)AL=σ(ZL) n^L \times 1nL×1

我们大家可能都了解训练神经网络的过程,就是更新网络参数,更新的方向是降低损失函数值。也就是将学习问题转换为了一个优化的问题。那么如何更新参数呢?我们需要计算参与训练参数相对于损失函数的导数,然后求解梯度,然后使用梯度下降法来更新参数,迭代这个过程,可以找到一个最佳的解决方案来最小化损失函数。

我们知道反向传播主要就是用来结算损失函数相对于权重和偏置的导数

可能已经听到或读到了,很多关于在网络通过反向传播来传递误差的信息。然后根据神经元的 w 和 b 对偏差贡献的大小。也就是将误差分配到每一个神经元上。 但这里的误差(error)是什么意思呢?这个误差的确切的定义又是什么?答案是这些误差是由每一层神经网络所贡献的,而且某一层的误差是后继层误差基础上分摊的,网络中第 层的误差用来表示。

反向传播是基于 4 个基本方程的,通过这些方程来计算误差和损失函数,这里将这 4 个方程一一列出

关于如何解读这个 4 个方程,随后想用一期分享来说明。

class NeuralNetwork(object):
  def __init__(self):
    pass
  def forward(self,x):
    # 返回前向传播的 Z 也就是 w 和 b 线性组合,输入激活函数前的值
    # 返回激活函数输出值 A
    # z_s , a_s
    pass
  def backward(self,y,z_s,a_s):
    #返回前向传播中学习参数的导数 dw db
    pass
  def train(self,x,y,batch_size=10,epochs=100,lr=0.001):
    pass

我们都是神经网络学习过程,也就是训练过程。主要分为两个阶段前向传播后向传播

  • 在前向传播函数中,主要计算传播的 Z 和 A,关于 Z 和 A 具体是什么请参见前面表格
  • 在反向传播中计算可学习变量 w 和 b 的导数
  def __init__(self,layers = [2 , 10, 1], activations=['sigmoid', 'sigmoid']):
    assert(len(layers) == len(activations)+1)
    self.layers = layers
    self.activations = activations
    self.weights = []
    self.biases = []
    for i in range(len(layers)-1):
      self.weights.append(np.random.randn(layers[i+1], layers[i]))
      self.biases.append(np.random.randn(layers[i+1], 1))
  • layers 参数用于指定每一层神经元的个数
  • activations 为每一层指定激活函数,也就是

来简单读解一下代码 assert(len(layers) == len(activations)+1)

for i in range(len(layers)-1):
  self.weights.append(np.random.randn(layers[i+1], layers[i]))
  self.biases.append(np.random.randn(layers[i+1], 1))

因为权重连接每一个层神经元的 w 和 b ,也就两两层之间的方程,上面代码是对

前向传播

def feedforward(self, x):
  # 返回前向传播的值
  a = np.copy(x)
  z_s = []
  a_s = [a]
  for i in range(len(self.weights)):
      activation_function = self.getActivationFunction(self.activations[i])
      z_s.append(self.weights[i].dot(a) + self.biases[i])
      a = activation_function(z_s[-1])
      a_s.append(a)
  return (z_s, a_s)

这里激活函数,这个函数返回值是一个函数,在 python 用 lambda 来返回一个函数,这里简答留下一个伏笔,随后会对其进行修改。

  @staticmethod
  def getActivationFunction(name):
        if(name == 'sigmoid'):
            return lambda x : np.exp(x)/(1+np.exp(x))
        elif(name == 'linear'):
            return lambda x : x
        elif(name == 'relu'):
            def relu(x):
                y = np.copy(x)
                y[y<0] = 0
                return y
            return relu
        else:
            print('Unknown activation function. linear is used')
            return lambda x: x
[@staticmethod]
def getDerivitiveActivationFunction(name):
    if(name == 'sigmoid'):
        sig = lambda x : np.exp(x)/(1+np.exp(x))
        return lambda x :sig(x)*(1-sig(x))
    elif(name == 'linear'):
        return lambda x: 1
    elif(name == 'relu'):
        def relu_diff(x):
            y = np.copy(x)
            y[y>=0] = 1
            y[y<0] = 0
            return y
        return relu_diff
    else:
        print('Unknown activation function. linear is used')
        return lambda x: 1

反向传播

这是本次分享重点

  def backpropagation(self,y, z_s, a_s):
      dw = []  # dC/dW
      db = []  # dC/dB
      deltas = [None] * len(self.weights)  # delta = dC/dZ 计算每一层的误差
      # 最后一层误差

      deltas[-1] = ((y-a_s[-1])*(self.getDerivitiveActivationFunction(self.activations[-1]))(z_s[-1]))
      # 反向传播
      for i in reversed(range(len(deltas)-1)):
          deltas[i] = self.weights[i+1].T.dot(deltas[i+1])*(self.getDerivitiveActivationFunction(self.activations[i])(z_s[i]))
      #a= [print(d.shape) for d in deltas]
      batch_size = y.shape[1]
      db = [d.dot(np.ones((batch_size,1)))/float(batch_size) for d in deltas]
      dw = [d.dot(a_s[i].T)/float(batch_size) for i,d in enumerate(deltas)]
      # 返回权重(weight)矩阵 and 偏置向量(biases)
      return dw, db

首先计算最后一层误差根据 BP1 等式可以得到下面的式子

deltas[-1] = ((y-a_s[-1])*(self.getDerivitiveActivationFunction(self.activations[-1]))(z_s[-1]))

接下来基于上一层的 误差来计算当前层 

batch_size = y.shape[1]
db = [d.dot(np.ones((batch_size,1)))/float(batch_size) for d in deltas]
dw = [d.dot(a_s[i].T)/float(batch_size) for i,d in enumerate(deltas)]

开始训练

  def train(self, x, y, batch_size=10, epochs=100, lr = 0.01):
# update weights and biases based on the output
      for e in range(epochs): 
          i=0
          while(i<len(y)):
              x_batch = x[i:i+batch_size]
              y_batch = y[i:i+batch_size]
              i = i+batch_size
              z_s, a_s = self.feedforward(x_batch)
              dw, db = self.backpropagation(y_batch, z_s, a_s)
              self.weights = [w+lr*dweight for w,dweight in  zip(self.weights, dw)]
              self.biases = [w+lr*dbias for w,dbias in  zip(self.biases, db)]
              # print("loss = {}".format(np.linalg.norm(a_s[-1]-y_batch) ))

感谢各位的阅读,以上就是“Python全连接神经网络怎样实现,过程是什么”的内容了,经过本文的学习后,相信大家对Python全连接神经网络怎样实现,过程是什么都有更深刻的体会了吧。这里是群英网络,小编将为大家推送更多相关知识点的文章,欢迎关注! 群英智防CDN,智能加速解决方案

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服