Simhash算法是什么意思,用Python怎样实现
Admin 2022-08-06 群英技术资讯 343 次浏览
传统相似度算法:文本相似度的计算,一般使用向量空间模型(VSM),先对文本分词,提取特征,根据特征建立文本向量,把文本之间相似度的计算转化为特征向量距离的计算,如欧式距离、余弦夹角等。
缺点:大数据情况下复杂度会很高。
Simhash应用场景:计算大规模文本相似度,实现海量文本信息去重。
Simhash算法原理:通过hash值比较相似度,通过两个字符串计算出的hash值,进行异或操作,然后得到相差的个数,数字越大则差异越大。
词频(TF):一个词语在整篇文章中出现的次数与词语总个数之比;
逆向词频(IDF):一个词语,在所有文章中出现的频率都非常高,这个词语不具有代表性,就可以降低其作用,也就是赋予其较小的权值。
分子代表文章总数,分母表示该词语在这些文章出现的篇数。一般会采取分母加一的方法,防止分母为0的情况出现,在这个比值之后取对数,就是IDF了。
最终用tf*idf得到一个词语的权重,进而计算一篇文章的关键词。然后根据每篇文章对比其关键词的方法来对文章进行去重。simhash算法对效率和性能进行平衡,既可以很少的对比(关键词不能取太多),又能有好的代表性(关键词不能过少)。
Simhash是一种局部敏感hash。即假定A、B具有一定的相似性,在hash之后,仍然能保持这种相似性,就称之为局部敏感hash。
得到一篇文章关键词集合,通过hash的方法把关键词集合hash成一串二进制,直接对比二进制数,其相似性就是两篇文档的相似性,在查看相似性时采用海明距离,即在对比二进制的时候,看其有多少位不同,就称海明距离为多少。
将文章simhash得到一串64位的二进制,根据经验一般取海明距离为3作为阈值,即在64位二进制中,只要有三位以内不同,就可以认为两个文档是相似的,这里的阈值也可以根据自己的需求来设置。也就是把一个文档hash之后得到一串二进制数的算法,称这个hash为simhash。
simhash具体实现步骤如下:
Simhash整体流程图如下:
完全无关的文本正好对应成了相同的simhash,精确度并不是很高,而且simhash更适用于较长的文本,但是在大规模语料进行去重时,simhash的计算速度优势还是很不错的。
# !/usr/bin/python # coding=utf-8 class Simhash: def __init__(self, tokens='', hashbits=128): self.hashbits = hashbits self.hash = self.simhash(tokens) def __str__(self): return str(self.hash) # 生成simhash值 def simhash(self, tokens): v = [0] * self.hashbits for t in [self._string_hash(x) for x in tokens]: # t为token的普通hash值 for i in range(self.hashbits): bitmask = 1 << i if t & bitmask: v[i] += 1 # 查看当前bit位是否为1,是的话将该位+1 else: v[i] -= 1 # 否则的话,该位-1 fingerprint = 0 for i in range(self.hashbits): if v[i] >= 0: fingerprint += 1 << i return fingerprint # 整个文档的fingerprint为最终各个位>=0的和 # 求海明距离 def hamming_distance(self, other): x = (self.hash ^ other.hash) & ((1 << self.hashbits) - 1) tot = 0 while x: tot += 1 x &= x - 1 return tot # 求相似度 def similarity(self, other): a = float(self.hash) b = float(other.hash) if a > b: return b / a else: return a / b # 针对source生成hash值 def _string_hash(self, source): if source == "": return 0 else: x = ord(source[0]) << 7 m = 1000003 mask = 2 ** self.hashbits - 1 for c in source: x = ((x * m) ^ ord(c)) & mask x ^= len(source) if x == -1: x = -2 return x
测试:
if __name__ == '__main__': s = 'This is a test string for testing' hash1 = Simhash(s.split()) s = 'This is a string testing 11' hash2 = Simhash(s.split()) print(hash1.hamming_distance(hash2), " ", hash1.similarity(hash2))
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
函数最重要的目的是方便我们重复使用相同的一段程序。将一些操作隶属于一个函数,以后你想实现相同的操作的时候,只用调用函数名就可以,而
这篇文章主要为大家介绍了PyTorch深度学习LSTM从input输入到Linear输出深入理解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
内容介绍一、概念介绍二、数据展示三、数据导入四、图像绘制五、树形结构总结一、概念介绍矩形树图(Treemap),即矩形式树状结构图,利用矩形的面积表示数值的大小,颜色用于类别区分,常用于呈现多类别的一
这篇文章主要介绍了pytest结合csv模块实现csv格式的数据驱动,使用python中的csv模块来处理csv文件,结合pygtest的参数化处理方式来实现ddt,本文通过示例代码给大家介绍的非常详细,需要的朋友参考下吧
本文主要介绍了Python datacompy 找出两个DataFrames不同的地方,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧<BR>
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008