基于Python如何做图像形变与缩放的功能
Admin 2022-08-06 群英技术资讯 472 次浏览
图像的形变与缩放,使用的是skimage的transform模块,函数比较多,功能齐全。
函数格式为:
skimage.transform.resize(image,output_shape)
image: 需要改变尺寸的图片
output_shape: 新的图片尺寸
from skimage import transform,data import matplotlib.pyplot as plt img = data.camera() dst=transform.resize(img, (80, 60)) plt.figure('resize') plt.subplot(121) plt.title('before resize') plt.imshow(img,plt.cm.gray) plt.subplot(122) plt.title('before resize') plt.imshow(dst,plt.cm.gray) plt.show()
将camera图片由原来的512*512大小,变成了80*60大小。从下图中的坐标尺,我们能够看出来:
函数格式为:
skimage.transform.rescale(image,scale[,...])
scale参数可以是单个float数,表示缩放的倍数,也可以是一个float型的tuple,如[0.2,0.5],表示将行列数分开进行缩放
from skimage import transform,data img = data.camera() print(img.shape) #图片原始大小 print(transform.rescale(img, 0.1).shape) #缩小为原来图片大小的0.1倍 print(transform.rescale(img, [0.5,0.25]).shape) #缩小为原来图片行数一半,列数四分之一 print(transform.rescale(img, 2).shape) #放大为原来图片大小的2倍
结果为:
(512, 512)
(51, 51)
(256, 128)
(1024, 1024)
skimage.transform.rotate(image,angle[,...],resize=False)
angle参数是个float类型数,表示旋转的度数
resize用于控制在旋转时,是否改变大小 ,默认为False
from skimage import transform,data import matplotlib.pyplot as plt img = data.camera() print(img.shape) #图片原始大小 img1=transform.rotate(img, 60) #旋转90度,不改变大小 print(img1.shape) img2=transform.rotate(img, 30,resize=True) #旋转30度,同时改变大小 print(img2.shape) plt.figure('resize') plt.subplot(121) plt.title('rotate 60') plt.imshow(img1,plt.cm.gray) plt.subplot(122) plt.title('rotate 30') plt.imshow(img2,plt.cm.gray) plt.show()
显示结果:
以多分辨率来解释图像的一种有效但概念简单的结构就是图像金字塔。图像金字塔最初用于机器视觉和图像压缩,一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低的图像集合。金字塔的底部是待处理图像的高分辨率表示,而顶部是低分辨率的近似。当向金字塔的上层移动时,尺寸和分辨率就降低。
在此,我们举一个高斯金字塔的应用实例,函数原型为:
skimage.transform.pyramid_gaussian(image, downscale=2)
downscale控制着金字塔的缩放比例
import numpy as np import matplotlib.pyplot as plt from skimage import data,transform image = data.astronaut() #载入宇航员图片 rows, cols, dim = image.shape #获取图片的行数,列数和通道数 pyramid = tuple(transform.pyramid_gaussian(image, downscale=2)) #产生高斯金字塔图像 #共生成了log(512)=9幅金字塔图像,加上原始图像共10幅,pyramid[0]-pyramid[1] composite_image = np.ones((rows, cols + cols / 2, 3), dtype=np.double) #生成背景 composite_image[:rows, :cols, :] = pyramid[0] #融合原始图像 i_row = 0 for p in pyramid[1:]: n_rows, n_cols = p.shape[:2] composite_image[i_row:i_row + n_rows, cols:cols + n_cols] = p #循环融合9幅金字塔图像 i_row += n_rows plt.imshow(composite_image) plt.show()
上图,就是10张金字塔图像,下标为0的表示原始图像,后面每层的图像行和列变为上一层的一半,直至变为1
除了高斯金字塔外,还有其它的金字塔,如:
skimage.transform.pyramid_laplacian(image, downscale=2):
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
selenium的几种定位方法中,大杀器之一就是xpath方法,学会它,你将无所不能.本文就带大家详细了解一下这个大杀器,文中有非常详细的介绍,需要的朋友可以参考下
这篇文章主要介绍了python中常见进制之间的转换方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
由于项目取数需要,要将两个不同的csv文件合并到一个文件中,所以下面这篇文章主要给大家介绍了关于利用python合并csv文件的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
用Python怎样将日历与时间转换,方法和代码是什么?有不少朋友对此感兴趣,下面小编给大家整理和分享了相关知识和资料,易于大家学习和理解,有需要的朋友可以借鉴参考,下面我们一起来了解一下吧。
大家好,本篇文章主要讲的是Python3.10和Python3.9版本之间的差异介绍,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下哦
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008