基于Python如何实现对比度与亮度调整的功能
Admin 2022-08-06 群英技术资讯 612 次浏览
图像亮度与对比度的调整,是放在skimage包的exposure模块里面
对原图像的像素,进行幂运算,得到新的像素值。公式中的g就是gamma值。
如果gamma>1, 新图像比原图像暗
如果gamma<1,新图像比原图像亮
函数格式为:skimage.exposure.adjust_gamma(image, gamma=1)
gamma参数默认为1,原像不发生变化 。
from skimage import data, exposure, img_as_float import matplotlib.pyplot as plt image = img_as_float(data.moon()) gam1= exposure.adjust_gamma(image, 2) #调暗 gam2= exposure.adjust_gamma(image, 0.5) #调亮 plt.figure('adjust_gamma',figsize=(8,8)) plt.subplot(131) plt.title('origin image') plt.imshow(image,plt.cm.gray) plt.axis('off') plt.subplot(132) plt.title('gamma=2') plt.imshow(gam1,plt.cm.gray) plt.axis('off') plt.subplot(133) plt.title('gamma=0.5') plt.imshow(gam2,plt.cm.gray) plt.axis('off') plt.show()
这个刚好和gamma相反
原理:I=log(I)
from skimage import data, exposure, img_as_float import matplotlib.pyplot as plt image = img_as_float(data.moon()) gam1= exposure.adjust_log(image) #对数调整 plt.figure('adjust_gamma',figsize=(8,8)) plt.subplot(121) plt.title('origin image') plt.imshow(image,plt.cm.gray) plt.axis('off') plt.subplot(122) plt.title('log') plt.imshow(gam1,plt.cm.gray) plt.axis('off') plt.show()
函数:is_low_contrast(img)
返回一个bool型值
from skimage import data, exposure image =data.moon() result=exposure.is_low_contrast(image) print(result)
输出为False
函数:
skimage.exposure.rescale_intensity(image, in_range='image', out_range='dtype')
in_range 表示输入图片的强度范围,默认为'image', 表示用图像的最大/最小像素值作为范围
out_range 表示输出图片的强度范围,默认为'dype', 表示用图像的类型的最大/最小值作为范围
默认情况下,输入图片的[min,max]范围被拉伸到[dtype.min, dtype.max],如果
dtype=uint8, 那么dtype.min=0, dtype.max=255
import numpy as np from skimage import exposure image = np.array([51, 102, 153], dtype=np.uint8) mat=exposure.rescale_intensity(image) print(mat)
输出为[ 0 127 255]
即像素最小值由51变为0,最大值由153变为255,整体进行了拉伸,但是数据类型没有变,还是uint8
前面我们讲过,可以通过img_as_float()函数将unit8类型转换为float型,实际上还有更简单的方法,就是乘以1.0
import numpy as np image = np.array([51, 102, 153], dtype=np.uint8) print(image*1.0)
即由[51,102,153]变成了[ 51. 102. 153.]
而float类型的范围是[0,1],因此对float进行rescale_intensity 调整后,范围变为[0,1],而不是[0,255]
import numpy as np from skimage import exposure image = np.array([51, 102, 153], dtype=np.uint8) tmp=image*1.0 mat=exposure.rescale_intensity(tmp) print(mat)
结果为[ 0. 0.5 1. ]
如果原始像素值不想被拉伸,只是等比例缩小,就使用in_range参数,如:
import numpy as np from skimage import exposure image = np.array([51, 102, 153], dtype=np.uint8) tmp=image*1.0 mat=exposure.rescale_intensity(tmp,in_range=(0,255)) print(mat)
输出为:[ 0.2 0.4 0.6],即原像素值除以255
如果参数in_range的[main,max]范围要比原始像素值的范围[min,max] 大或者小,那就进行裁剪,如:
mat=exposure.rescale_intensity(tmp,in_range=(0,102)) print(mat)
输出[ 0.5 1. 1. ],即原像素值除以102,超出1的变为1
如果一个数组里面有负数,现在想调整到正数,就使用out_range参数。如:
import numpy as np from skimage import exposure image = np.array([-10, 0, 10], dtype=np.int8) mat=exposure.rescale_intensity(image, out_range=(0, 127)) print(mat)
输出[ 0 63 127]
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要为大家详细介绍了Python3利用Qt5实现简易的五子棋游戏,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
最近开发中用到了eval()与exec()这两个函数,不知道在哪种场景下用哪个函数,所以就翻了下Python的文档。这里就来简单说一下这两个函数的区
在本文中,小编将带大家学习一下Python中的lambda函数,并探讨使用它的优点和局限性。文中的示例代码讲解详细,感兴趣的可以了解一下
这篇文章主要介绍了Python 迭代器Iterator详情,迭代器可以帮助我们解决面对复杂的数据场景时,快速简便的获取数据,下文关于其详细介绍,需要的小伙伴可以参考一下
这篇文章主要介绍了基于Python的EasyGUI学习实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008