用pyecharts怎样绘制时间轮播的各种数据统计图
Admin 2022-08-05 群英技术资讯 401 次浏览
from random import randint from pyecharts import options as opts from pyecharts.charts import Bar, Timeline from pyecharts.globals import ThemeType data = {'x': ['葡萄', '芒果', '草莓', '雪梨', '西瓜', '香蕉', '橙子'], '沃尔玛': dict(zip(range(2010, 2020), [[randint(100, 1000) for fruit in range(7)] for year in range(10)])), '大润发': dict(zip(range(2010, 2020), [[randint(100, 1000) for fruit in range(7)] for year in range(10)])) } def timeline_bar() -> Timeline: x = data['x'] tl = Timeline(init_opts=opts.InitOpts(theme=ThemeType.LIGHT)) for i in range(2010, 2020): bar = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT)) .add_xaxis(x) .add_yaxis('沃尔玛', data['沃尔玛'][i]) .add_yaxis('大润发', data['大润发'][i]) .set_global_opts(title_opts=opts.TitleOpts("{}年营业额".format(i))) ) tl.add(bar, "{}年".format(i)) return tl timeline_bar().render("timeline_bar.html")
#导入模块 from random import randint from pyecharts import options as opts from pyecharts.charts import Pie, Timeline from pyecharts.globals import ThemeType attr = ["学习", "娱乐", "休息", "运动", "交流"] list1 = [2018, 2019, 2020, 2021, 2022] list2 = [[randint(100, 1000) for time in range(7)] for year in range(5)] #嵌套列表 data = {'x': attr, '时长': dict(zip(list1,list2)) } def timeline_pie1() -> Timeline: x = data['x'] tl = Timeline(init_opts=opts.InitOpts(theme=ThemeType.LIGHT)) for i in list1: c = ( Pie(init_opts=opts.InitOpts(theme=ThemeType.WONDERLAND)) #主题风格 .add("", [list(z) for z in zip(attr,data['时长'][i])] ) .set_global_opts(title_opts=opts.TitleOpts(title="活动时长占比",pos_top="top",pos_left="left"), legend_opts=opts.LegendOpts(pos_left="right", orient="vertical")) # 设置标题 .set_series_opts(label_opts=opts.LabelOpts(formatter='{b}:{d}%'))) # 显示百分比 tl.add(c, "{}".format(i)) return tl timeline_pie1().render("timeline_pie.html")
#导入模块 from random import randint from pyecharts import options as opts from pyecharts.charts import Pie, Timeline from pyecharts.globals import ThemeType attr = ["学习", "娱乐", "休息", "运动", "交流"] list1 = [2018, 2019, 2020, 2021, 2022] list2 = [[randint(100, 1000) for time in range(7)] for year in range(5)] #嵌套列表 data = {'x': attr, '时长': dict(zip(list1, list2)) } def timeline_bar1() -> Timeline: x = data['x'] tl = Timeline(init_opts=opts.InitOpts(theme=ThemeType.LIGHT)) for i in list1: c = ( Pie(init_opts=opts.InitOpts(theme=ThemeType.LIGHT)) #主题风格 .add("", [list(z) for z in zip(attr,data['时长'][i])],radius=["25%", "75%"],rosetype="radius") .set_global_opts(title_opts=opts.TitleOpts(title="活动时长占比",pos_top="top",pos_left="left"), legend_opts=opts.LegendOpts(pos_left="right", orient="vertical")) # 设置标题 .set_series_opts(label_opts=opts.LabelOpts(formatter='{b}:{d}%'))) # 显示百分比 tl.add(c, "{}".format(i)) return tl timeline_bar1().render("玫瑰图.html")
#导入模块 from random import randint from pyecharts import options as opts from pyecharts.charts import Line, Timeline from pyecharts.globals import ThemeType list1 = [2018, 2019, 2020, 2021, 2022] list2 = [[randint(100, 1000) for time in range(7)] for year in range(5)] #嵌套列表 data = {'x': ['学习','娱乐','休息','运动','交流'], '时长': dict(zip(list1, list2)) } def timeline_bar() -> Timeline: x = data['x'] tl = Timeline() for i in list1: bar = ( Line() .add_xaxis(x) .add_yaxis('时长(min)', data['时长'][i]) .set_global_opts(title_opts=opts.TitleOpts("{}年活动时长统计".format(i))) ) tl.add(bar, "{}年".format(i)) # tl.add_schema(play_interval=1200, #播放速度 # is_timeline_show=False, #是否显示 timeline 组件 # is_auto_play=True) return tl timeline_bar().render("折线图.html")
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要为大家介绍了Python开启尾递归优化的实现示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
behave是python语言的行为驱动开发,全称:Behavior-driven development,简称BDD。BDD即行为驱动开发(Behavior Driven Development),其特点为: 通过自然语言来定义系统行为从功能使用者...
今天给大家分享的是关于plot函数怎样使用的内容,在python环境中,若要绘制图形,那么就一定离不开plot函数,因此小编分享给大家做个参考,下文实例对大家学习plot函数有一定帮助,接下来跟随小编一起看看吧。
在使用Pandas处理数据时,常见的读取数据的方式时从Excel或CSV文件中获取,这篇文章主要给大家介绍了关于如何使用pandas生成、读取csv文件的相关资料,需要的朋友可以参考下
这篇文章主要为大家介绍了python循环神经网络RNN的tf.nn.dynamic_rnn使用示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008