基于Python如何实现提取图片颜色,方法是什么

Admin 2022-08-04 群英技术资讯 878 次浏览

本篇内容介绍了“基于Python如何实现提取图片颜色,方法是什么”的有关知识,在实际项目的操作过程或是学习过程中,不少人都会遇到这样的问题,接下来就让小编带大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
 

今天小编来为大家分享一个有趣的可视化技巧,如何从图片中提取颜色然后绘制成可视化图表,如下图所示

在示例照片当中有着各种各样的颜色,我们将通过Python中的可视化模块以及opencv模块来识别出图片当中所有的颜色要素,并且将其添加到可视化图表的配色当中

导入模块并加载图片

那么按照惯例,第一步一般都是导入模块,可视化用到的模块是matplotlib模块,我们将图片中的颜色抽取出来之后会保存在颜色映射表中,所以要使用到colormap模块,同样也需要导入进来

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.image as mpimg

from PIL import Image
from matplotlib.offsetbox import OffsetImage, AnnotationBbox

import cv2
import extcolors
from colormap import rgb2hex

然后我们先来加载一下图片,代码如下

input_name = 'test_1.png'
img = plt.imread(input_name)
plt.imshow(img)
plt.axis('off')
plt.show()

output

提取颜色并整合成表格

我们调用的是extcolors模块来从图片中提取颜色,输出的结果是RGB形式呈现出来的颜色,代码如下

colors_x = extcolors.extract_from_path(img_url, tolerance=12, limit = 12)
colors_x

output

([((3, 107, 144), 180316),
  ((17, 129, 140), 139930),
  ((89, 126, 118), 134080),
  ((125, 148, 154), 20636),
  ((63, 112, 126), 18728),
  ((207, 220, 226), 11037),
  ((255, 255, 255), 7496),
  ((28, 80, 117), 4972),
  ((166, 191, 198), 4327),
  ((60, 150, 140), 4197),
  ((90, 94, 59), 3313),
  ((56, 66, 39), 1669)],
 538200)

我们将上述的结果整合成一个DataFrame数据集,代码如下

def color_to_df(input_color):
    colors_pre_list = str(input_color).replace('([(', '').split(', (')[0:-1]
    df_rgb = [i.split('), ')[0] + ')' for i in colors_pre_list]
    df_percent = [i.split('), ')[1].replace(')', '') for i in colors_pre_list]

    # 将RGB转换成十六进制的颜色
    df_color_up = [rgb2hex(int(i.split(", ")[0].replace("(", "")),
                           int(i.split(", ")[1]),
                           int(i.split(", ")[2].replace(")", ""))) for i in df_rgb]

    df = pd.DataFrame(zip(df_color_up, df_percent), columns=['c_code', 'occurence'])
    return df

我们尝试调用上面我们自定义的函数,输出的结果至DataFrame数据集当中

df_color = color_to_df(colors_x)
df_color

output

绘制图表

接下来便是绘制图表的阶段了,用到的是matplotlib模块,代码如下

fig, ax = plt.subplots(figsize=(90,90),dpi=10)
wedges, text = ax.pie(list_precent,
                      labels= text_c,
                      labeldistance= 1.05,
                      colors = list_color,
                      textprops={'fontsize': 120, 'color':'black'}
                     )
plt.setp(wedges, width=0.3)
ax.set_aspect("equal")
fig.set_facecolor('white')
plt.show()

output

从出来的饼图中显示了每种不同颜色的占比,我们更进一步将原图放置在圆环当中,

imagebox = OffsetImage(img, zoom=2.3)
ab = AnnotationBbox(imagebox, (0, 0))
ax1.add_artist(ab)

output

最后制作一张调色盘,将原图中的各种不同颜色都罗列开来,代码如下

## 调色盘
x_posi, y_posi, y_posi2 = 160, -170, -170
for c in list_color:
    if list_color.index(c) <= 5:
        y_posi += 180
        rect = patches.Rectangle((x_posi, y_posi), 360, 160, facecolor = c)
        ax2.add_patch(rect)
        ax2.text(x = x_posi+400, y = y_posi+100, s = c, fontdict={'fontsize': 190})
    else:
        y_posi2 += 180
        rect = patches.Rectangle((x_posi + 1000, y_posi2), 360, 160, facecolor = c)
        ax2.add_artist(rect)
        ax2.text(x = x_posi+1400, y = y_posi2+100, s = c, fontdict={'fontsize': 190})

ax2.axis('off')
fig.set_facecolor('white')
plt.imshow(bg)       
plt.tight_layout()

output

实战环节

这一块儿是实战环节,我们将上述所有的代码封装成一个完整的函数

def exact_color(input_image, resize, tolerance, zoom):
    
    output_width = resize
    img = Image.open(input_image)
    if img.size[0] >= resize:
        wpercent = (output_width/float(img.size[0]))
        hsize = int((float(img.size[1])*float(wpercent)))
        img = img.resize((output_width,hsize), Image.ANTIALIAS)
        resize_name = 'resize_'+ input_image
        img.save(resize_name)
    else:
        resize_name = input_image
    
    fig.set_facecolor('white')
    ax2.axis('off')
    bg = plt.imread('bg.png')
    plt.imshow(bg)       
    plt.tight_layout()
    return plt.show()
    
exact_color('test_2.png', 900, 12, 2.5)

output


到此这篇关于“基于Python如何实现提取图片颜色,方法是什么”的文章就介绍到这了,更多相关基于Python如何实现提取图片颜色,方法是什么内容,欢迎关注群英网络技术资讯频道,小编将为大家输出更多高质量的实用文章! 群英智防CDN,智能加速解决方案

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服