Python双向RNN和堆叠的双向RNN是什么意思
Admin 2022-08-03 群英技术资讯 288 次浏览
双向RNN(Bidirectional RNN)的结构如下图所示。
双向的 RNN 是同时考虑“过去”和“未来”的信息。上图是一个序列长度为 4 的双向RNN 结构。
双向RNN就像是我们做阅读理解的时候从头向后读一遍文章,然后又从后往前读一遍文章,然后再做题。有可能从后往前再读一遍文章的时候会有新的不一样的理解,最后模型可能会得到更好的结果。
堆叠的双向RNN(Stacked Bidirectional RNN)的结构如上图所示。上图是一个堆叠了3个隐藏层的RNN网络。
注意,这里的堆叠的双向RNN并不是只有双向的RNN才可以堆叠,其实任意的RNN都可以堆叠,如SimpleRNN、LSTM和GRU这些循环神经网络也可以进行堆叠。
堆叠指的是在RNN的结构中叠加多层,类似于BP神经网络中可以叠加多层,增加网络的非线性。
import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.layers import LSTM,Dropout,Bidirectional from tensorflow.keras.optimizers import Adam import matplotlib.pyplot as plt # 载入数据集 mnist = tf.keras.datasets.mnist # 载入数据,数据载入的时候就已经划分好训练集和测试集 # 训练集数据x_train的数据形状为(60000,28,28) # 训练集标签y_train的数据形状为(60000) # 测试集数据x_test的数据形状为(10000,28,28) # 测试集标签y_test的数据形状为(10000) (x_train, y_train), (x_test, y_test) = mnist.load_data() # 对训练集和测试集的数据进行归一化处理,有助于提升模型训练速度 x_train, x_test = x_train / 255.0, x_test / 255.0 # 把训练集和测试集的标签转为独热编码 y_train = tf.keras.utils.to_categorical(y_train,num_classes=10) y_test = tf.keras.utils.to_categorical(y_test,num_classes=10) # 数据大小-一行有28个像素 input_size = 28 # 序列长度-一共有28行 time_steps = 28 # 隐藏层memory block个数 cell_size = 50 # 创建模型 # 循环神经网络的数据输入必须是3维数据 # 数据格式为(数据数量,序列长度,数据大小) # 载入的mnist数据的格式刚好符合要求 # 注意这里的input_shape设置模型数据输入时不需要设置数据的数量 model = Sequential([ Bidirectional(LSTM(units=cell_size,input_shape=(time_steps,input_size),return_sequences=True)), Dropout(0.2), Bidirectional(LSTM(cell_size)), Dropout(0.2), # 50个memory block输出的50个值跟输出层10个神经元全连接 Dense(10,activation=tf.keras.activations.softmax) ]) # 循环神经网络的数据输入必须是3维数据 # 数据格式为(数据数量,序列长度,数据大小) # 载入的mnist数据的格式刚好符合要求 # 注意这里的input_shape设置模型数据输入时不需要设置数据的数量 # model.add(LSTM( # units = cell_size, # input_shape = (time_steps,input_size), # )) # 50个memory block输出的50个值跟输出层10个神经元全连接 # model.add(Dense(10,activation='softmax')) # 定义优化器 adam = Adam(lr=1e-3) # 定义优化器,loss function,训练过程中计算准确率 使用交叉熵损失函数 model.compile(optimizer=adam,loss='categorical_crossentropy',metrics=['accuracy']) # 训练模型 history=model.fit(x_train,y_train,batch_size=64,epochs=10,validation_data=(x_test,y_test)) #打印模型摘要 model.summary() loss=history.history['loss'] val_loss=history.history['val_loss'] accuracy=history.history['accuracy'] val_accuracy=history.history['val_accuracy'] # 绘制loss曲线 plt.plot(loss, label='Training Loss') plt.plot(val_loss, label='Validation Loss') plt.title('Training and Validation Loss') plt.legend() plt.show() # 绘制acc曲线 plt.plot(accuracy, label='Training accuracy') plt.plot(val_accuracy, label='Validation accuracy') plt.title('Training and Validation Loss') plt.legend() plt.show()
这个可能对文本数据比较容易处理,这里用这个模型有点勉强,只是简单测试下。
模型摘要:
acc曲线:
loss曲线:
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了Python pyecharts绘制柱状图,文章介绍的柱状/条形图,通过柱形的高度/条形的宽度来表现数据的大小,感兴趣的小伙伴一起进入文章学习更详细内容吧<BR>
pyqtSignal的基本使用,一些朋友可能会遇到这方面的问题,对此在下文小编向大家来讲解一下,内容详细,易于理解,希望大家阅读完这篇能有收获哦,有需要的朋友就往下看吧!
这篇文章主要介绍了Python在不同场景合并多个Excel的方法,文章围绕主题总共分享了三种方法,具有一定的参考价值,需要的小伙伴可以参考一下
这篇文章主要介绍了python重复值处理得方法,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
这篇文章主要介绍了自然语言处理之文本热词提取,主要就是通过jieba的posseg模块将一段文字分段并赋予不同字段不同意思,然后通过频率计算出热频词,需要的朋友可以参考下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008