Matplotlib中pyplot画图的子图大小如何设置
Admin 2022-08-01 群英技术资讯 942 次浏览
我相信,看到这篇博客的人,你肯定已经会使用Matplotlib中的pyplot画图。
比如下面这种图
你也应该会调整单个图的大小了,就是使用如下语句控制单个图形figure的大小,比如我这里设的8*6的。
fig3 = plt.figure(figsize=(8,6))
但随着继续深入的学习,有时我们很有必要将两个图画在一起,来做对比,所以你也应该会在一个画布上画多个子图了。比如下图
即是通过subplot实现
#展示一下数据 fig = plt.figure(figsize=(15,7)) fig1 = plt.subplot(231) plt.scatter(data.loc[:,'Avg. Area Income'],data.loc[:,'Price']) plt.title('Income VS Price') fig2 = plt.subplot(232) plt.scatter(data.loc[:,'Avg. Area House Age'],data.loc[:,'Price']) plt.title('Age VS Price') fig3 = plt.subplot(233) plt.scatter(data.loc[:,'Avg. Area Number of Rooms'],data.loc[:,'Price']) plt.title('Number VS Price') fig4 = plt.subplot(234) plt.scatter(data.loc[:,'Area Population'],data.loc[:,'Price']) plt.title('Population VS Price') fig5 = plt.subplot(235) plt.scatter(data.loc[:,'size'],data.loc[:,'Price']) plt.title('size VS Price') plt.show()
目前为止图好像没有问题,那问题在哪呢?就是在子图比较少的时候,整个图可能会变形,出现下图情况。
这显然不是我们期望的,我们希望他不要拉长。但是貌似直接通过subplot画出的子图无法更改大小,网上给的一些方案也比较麻烦。
把这两个子图画在同一个画布里,这样即是子图无法改变,但是外面的画布大小可以改变,子图就可以根据外面画布大小自适应的显示了。
对于该图
其原始代码为
fig6 = plt.subplot(121) label0 = plt.scatter(X.loc[:,'V1'][y_corrected==0],X.loc[:,'V2'][y_corrected==0]) label1 = plt.scatter(X.loc[:,'V1'][y_corrected==1],X.loc[:,'V2'][y_corrected==1]) label2 = plt.scatter(X.loc[:,'V1'][y_corrected==2],X.loc[:,'V2'][y_corrected==2]) plt.title("corrected data") plt.xlabel('V1') plt.ylabel('V2') plt.legend((label0,label1,label2),('label0','label1','label2')) plt.scatter(centers[:,0],centers[:,1]) fig7 = plt.subplot(122) label0 = plt.scatter(X.loc[:,'V1'][y==0],X.loc[:,'V2'][y==0]) label1 = plt.scatter(X.loc[:,'V1'][y==1],X.loc[:,'V2'][y==1]) label2 = plt.scatter(X.loc[:,'V1'][y==2],X.loc[:,'V2'][y==2]) plt.title("labled data") plt.xlabel('V1') plt.ylabel('V2') plt.legend((label0,label1,label2),('label0','label1','label2')) plt.scatter(centers[:,0],centers[:,1]) plt.show()
可以看到两个子图fig6和fig7都是直接使用subplot得到的,所以它变形了。
修改后应该是这样的:
对应代码 :
fig = plt.figure(figsize=(11,4)) fig6 = plt.subplot(121) label0 = plt.scatter(X.loc[:,'V1'][y_corrected==0],X.loc[:,'V2'][y_corrected==0]) label1 = plt.scatter(X.loc[:,'V1'][y_corrected==1],X.loc[:,'V2'][y_corrected==1]) label2 = plt.scatter(X.loc[:,'V1'][y_corrected==2],X.loc[:,'V2'][y_corrected==2]) plt.title("corrected data") plt.xlabel('V1') plt.ylabel('V2') plt.legend((label0,label1,label2),('label0','label1','label2')) plt.scatter(centers[:,0],centers[:,1]) fig7 = plt.subplot(122) label0 = plt.scatter(X.loc[:,'V1'][y==0],X.loc[:,'V2'][y==0]) label1 = plt.scatter(X.loc[:,'V1'][y==1],X.loc[:,'V2'][y==1]) label2 = plt.scatter(X.loc[:,'V1'][y==2],X.loc[:,'V2'][y==2]) plt.title("labled data") plt.xlabel('V1') plt.ylabel('V2') plt.legend((label0,label1,label2),('label0','label1','label2')) plt.scatter(centers[:,0],centers[:,1]) plt.show()
相比原来的代码就多了第一行的操作,定一个合适画布的大小就可以方便动态调整子图了。
看到网上是有可以自定义子图大小的方法的,不过相比我想出来的这个方法,感觉太麻烦了。这个方法能解决我这一类问题了,如果后面遇到需要一个子图大一个子图小的问题再单独记录把。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了分割python多空格字符串的两种方法小结,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
Python数据可视化之Pyecharts使用,下文有实例供大家参考,对大家了解操作过程或相关知识有一定的帮助,而且实用性强,希望这篇文章能帮助大家,下面我们一起来了解看看吧。
这篇文章主要介绍了numpy 实现返回指定行的指定元素的位置索引操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
正则表达式可理解为对数据筛选的表达式,是有限个原子和元字符组成。一些朋友对于python实现重叠匹配感兴趣,下面小编给大家整理和分享了相关知识和资料,易于大家学习和理解,有需要的朋友可以借鉴参考,下面我们一起来了解一下吧。
小伙伴们还记不记得,在高考数学题后面的大题总会出现对数函数,需要我们画成对数函数图才能解答。之前小编向大家介绍对数log函数的表示方法,其实一般我们在使用对数函数的时候,会和对数函数图配合使用解决实际问题。那你知不知道在python中也可以画对数函数图呢?本文小编就以代码的形式向大家演示在python中绘制对数函数图的过程。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008