Python均值计算的实现是怎样的,代码是什么

Admin 2022-08-01 群英技术资讯 354 次浏览

在实际应用中,我们有时候会遇到“Python均值计算的实现是怎样的,代码是什么”这样的问题,我们该怎样来处理呢?下文给大家介绍了解决方法,希望这篇“Python均值计算的实现是怎样的,代码是什么”文章能帮助大家解决问题。



图片减去均值后,再进行训练和测试,会提高速度和精度。因此,一般在各种模型中都会有这个操作。

那么这个均值怎么来的呢,实际上就是计算所有训练样本的平均值,计算出来后,保存为一个均值文件,在以后的测试中,就可以直接使用这个均值来相减,而不需要对测试图片重新计算。

一、二进制格式的均值计算

caffe中使用的均值数据格式是binaryproto, 作者为我们提供了一个计算均值的文件compute_image_mean.cpp,放在caffe根目录下的tools文件夹里面。

编译后的可执行体放在 build/tools/ 下面,我们直接调用就可以了

# sudo build/tools/compute_image_mean examples/mnist/mnist_train_lmdb examples/mnist/mean.binaryproto

带两个参数:

第一个参数:examples/mnist/mnist_train_lmdb, 表示需要计算均值的数据,格式为lmdb的训练数据。

第二个参数:examples/mnist/mean.binaryproto, 计算出来的结果保存文件。

二、python格式的均值计算

如果我们要使用python接口,或者我们要进行特征可视化,可能就要用到python格式的均值文件了。首先,我们用lmdb格式的数据,计算出二进制格式的均值,然后,再转换成python格式的均值。

我们可以编写一个python脚本来实现:

#!/usr/bin/env python
import numpy as np
import sys,caffe
if len(sys.argv)!=3:
    print "Usage: python convert_mean.py mean.binaryproto mean.npy"
    sys.exit()
blob = caffe.proto.caffe_pb2.BlobProto()
bin_mean = open( sys.argv[1] , 'rb' ).read()
blob.ParseFromString(bin_mean)
arr = np.array( caffe.io.blobproto_to_array(blob) )
npy_mean = arr[0]
np.save( sys.argv[2] , npy_mean )

 将这个脚本保存为convert_mean.py

调用格式为:

# sudo python convert_mean.py mean.binaryproto mean.npy

其中的 mean.binaryproto 就是经过前面步骤计算出来的二进制均值。

mean.npy就是我们需要的python格式的均值。


关于“Python均值计算的实现是怎样的,代码是什么”就介绍到这了,如果大家觉得不错可以参考了解看看,如果想要了解更多,欢迎关注群英网络,小编每天都会为大家更新不同的知识。 群英智防CDN,智能加速解决方案
标签: python均值计算

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服