ppython多线程有什么用?怎样创建?

Admin 2021-05-20 群英技术资讯 456 次浏览

       在python学习中,python多线程是一个很重要的知识点,但是因为python多线程的概念比较抽象,对于新手来说,有些难理解,因此这篇文章就给大家详细介绍一下python多线程,感兴趣的朋友就继续往下看吧。

import threading
from threading import Lock,Thread
import time,os


'''
          python多线程详解
  什么是线程?
  线程也叫轻量级进程,是操作系统能够进行运算调度的最小单位,它被包涵在进程之中,是进程中的实际运作单位。
  线程自己不拥有系统资源,只拥有一点儿在运行中必不可少的资源,但它可与同属一个进程的其他线程共享进程所
  拥有的全部资源。一个线程可以创建和撤销另一个线程,同一个进程中的多个线程之间可以并发执行
'''

'''
 为什么要使用多线程?
 线程在程序中是独立的、并发的执行流。与分隔的进程相比,进程中线程之间的隔离程度要小,它们共享内存、文件句柄
 和其他进程应有的状态。
 因为线程的划分尺度小于进程,使得多线程程序的并发性高。进程在执行过程之中拥有独立的内存单元,而多个线程共享
 内存,从而极大的提升了程序的运行效率。
 线程比进程具有更高的性能,这是由于同一个进程中的线程都有共性,多个线程共享一个进程的虚拟空间。线程的共享环境
 包括进程代码段、进程的共有数据等,利用这些共享的数据,线程之间很容易实现通信。
 操作系统在创建进程时,必须为改进程分配独立的内存空间,并分配大量的相关资源,但创建线程则简单得多。因此,使用多线程
 来实现并发比使用多进程的性能高得要多。
'''

'''
 总结起来,使用多线程编程具有如下几个优点:
 进程之间不能共享内存,但线程之间共享内存非常容易。
 操作系统在创建进程时,需要为该进程重新分配系统资源,但创建线程的代价则小得多。
 因此使用多线程来实现多任务并发执行比使用多进程的效率高
 python语言内置了多线程功能支持,而不是单纯地作为底层操作系统的调度方式,从而简化了python的多线程编程。
'''


'''
 普通创建方式
'''
# def run(n):
#  print('task',n)
#  time.sleep(1)
#  print('2s')
#  time.sleep(1)
#  print('1s')
#  time.sleep(1)
#  print('0s')
#  time.sleep(1)
#
# if __name__ == '__main__':
#  t1 = threading.Thread(target=run,args=('t1',))  
# target是要执行的函数名(不是函数),args是函数对应的参数,以元组的形式存在
#  t2 = threading.Thread(target=run,args=('t2',))
#  t1.start()
#  t2.start()


'''
 自定义线程:继承threading.Thread来定义线程类,其本质是重构Thread类中的run方法
'''
# class MyThread(threading.Thread):
#  def __init__(self,n):
#   super(MyThread,self).__init__() #重构run函数必须写
#   self.n = n
#
#  def run(self):
#   print('task',self.n)
#   time.sleep(1)
#   print('2s')
#   time.sleep(1)
#   print('1s')
#   time.sleep(1)
#   print('0s')
#   time.sleep(1)
#
# if __name__ == '__main__':
#  t1 = MyThread('t1')
#  t2 = MyThread('t2')
#  t1.start()
#  t2.start()


'''
 守护线程
 下面这个例子,这里使用setDaemon(True)把所有的子线程都变成了主线程的守护线程,
 因此当主线程结束后,子线程也会随之结束,所以当主线程结束后,整个程序就退出了。
 所谓'线程守护',就是主线程不管该线程的执行情况,只要是其他子线程结束且主线程执行完毕,主线程都会关闭。
 也就是说:主线程不等待该守护线程的执行完再去关闭。
'''
# def run(n):
#  print('task',n)
#  time.sleep(1)
#  print('3s')
#  time.sleep(1)
#  print('2s')
#  time.sleep(1)
#  print('1s')
#
# if __name__ == '__main__':
#  t=threading.Thread(target=run,args=('t1',))
#  t.setDaemon(True)
#  t.start()
#  print('end')
'''
 通过执行结果可以看出,设置守护线程之后,当主线程结束时,子线程也将立即结束,不再执行
'''

'''
 主线程等待子线程结束
 为了让守护线程执行结束之后,主线程再结束,我们可以使用join方法,让主线程等待子线程执行
'''
# def run(n):
#  print('task',n)
#  time.sleep(2)
#  print('5s')
#  time.sleep(2)
#  print('3s')
#  time.sleep(2)
#  print('1s')
# if __name__ == '__main__':
#  t=threading.Thread(target=run,args=('t1',))
#  t.setDaemon(True) #把子线程设置为守护线程,必须在start()之前设置
#  t.start()
#  t.join()  #设置主线程等待子线程结束
#  print('end')


'''
 多线程共享全局变量
 线程时进程的执行单元,进程时系统分配资源的最小执行单位,所以在同一个进程中的多线程是共享资源的
'''
# g_num = 100
# def work1():
#  global g_num
#  for i in range(3):
#   g_num+=1
#  print('in work1 g_num is : %d' % g_num)
#
# def work2():
#  global g_num
#  print('in work2 g_num is : %d' % g_num)
#
# if __name__ == '__main__':
#  t1 = threading.Thread(target=work1)
#  t1.start()
#  time.sleep(1)
#  t2=threading.Thread(target=work2)
#  t2.start()


'''
  由于线程之间是进行随机调度,并且每个线程可能只执行n条执行之后,当多个线程同时修改同一条数据时可能会出现脏数据,
 所以出现了线程锁,即同一时刻允许一个线程执行操作。线程锁用于锁定资源,可以定义多个锁,像下面的代码,当需要独占
 某一个资源时,任何一个锁都可以锁定这个资源,就好比你用不同的锁都可以把这个相同的门锁住一样。
  由于线程之间是进行随机调度的,如果有多个线程同时操作一个对象,如果没有很好地保护该对象,会造成程序结果的不可预期,
 我们因此也称为“线程不安全”。
  为了防止上面情况的发生,就出现了互斥锁(Lock)
'''
# def work():
#  global n
#  lock.acquire()
#  temp = n
#  time.sleep(0.1)
#  n = temp-1
#  lock.release()
#
#
# if __name__ == '__main__':
#  lock = Lock()
#  n = 100
#  l = []
#  for i in range(100):
#   p = Thread(target=work)
#   l.append(p)
#   p.start()
#  for p in l:
#   p.join()


'''
 递归锁:RLcok类的用法和Lock类一模一样,但它支持嵌套,在多个锁没有释放的时候一般会使用RLock类
'''
# def func(lock):
#  global gl_num
#  lock.acquire()
#  gl_num += 1
#  time.sleep(1)
#  print(gl_num)
#  lock.release()
#
#
# if __name__ == '__main__':
#  gl_num = 0
#  lock = threading.RLock()
#  for i in range(10):
#   t = threading.Thread(target=func,args=(lock,))
#   t.start()


'''
 信号量(BoundedSemaphore类)
 互斥锁同时只允许一个线程更改数据,而Semaphore是同时允许一定数量的线程更改数据,比如厕所有3个坑,
 那最多只允许3个人上厕所,后面的人只能等里面有人出来了才能再进去
'''
# def run(n,semaphore):
#  semaphore.acquire() #加锁
#  time.sleep(3)
#  print('run the thread:%s\n' % n)
#  semaphore.release() #释放
#
#
# if __name__== '__main__':
#  num=0
#  semaphore = threading.BoundedSemaphore(5) #最多允许5个线程同时运行
#  for i in range(22):
#   t = threading.Thread(target=run,args=('t-%s' % i,semaphore))
#   t.start()
#  while threading.active_count() !=1:
#   pass
#  else:
#   print('----------all threads done-----------')

'''
 python线程的事件用于主线程控制其他线程的执行,事件是一个简单的线程同步对象,其主要提供以下的几个方法:
  clear将flag设置为 False
  set将flag设置为 True
  is_set判断是否设置了flag
  wait会一直监听flag,如果没有检测到flag就一直处于阻塞状态
 事件处理的机制:全局定义了一个Flag,当Flag的值为False,那么event.wait()就会阻塞,当flag值为True,
 那么event.wait()便不再阻塞
'''
event = threading.Event()
def lighter():
 count = 0
 event.set()   #初始者为绿灯
 while True:
  if 5 < count <=10:
   event.clear() #红灯,清除标志位
   print("\33[41;lmred light is on...\033[0m]")
  elif count > 10:
   event.set() #绿灯,设置标志位
   count = 0
  else:
   print('\33[42;lmgreen light is on...\033[0m')

  time.sleep(1)
  count += 1


def car(name):
 while True:
  if event.is_set():  #判断是否设置了标志位
   print('[%s] running.....'%name)
   time.sleep(1)
  else:
   print('[%s] sees red light,waiting...'%name)
   event.wait()
   print('[%s] green light is on,start going...'%name)


# startTime = time.time()
light = threading.Thread(target=lighter,)
light.start()

car = threading.Thread(target=car,args=('MINT',))
car.start()
endTime = time.time()
# print('用时:',endTime-startTime)

'''
       GIL 全局解释器
  在非python环境中,单核情况下,同时只能有一个任务执行。多核时可以支持多个线程同时执行。但是在python中,无论有多少个核
  同时只能执行一个线程。究其原因,这就是由于GIL的存在导致的。
  GIL的全程是全局解释器,来源是python设计之初的考虑,为了数据安全所做的决定。某个线程想要执行,必须先拿到GIL,我们可以
  把GIL看做是“通行证”,并且在一个python进程之中,GIL只有一个。拿不到线程的通行证,并且在一个python进程中,GIL只有一个,
  拿不到通行证的线程,就不允许进入CPU执行。GIL只在cpython中才有,因为cpython调用的是c语言的原生线程,所以他不能直接操
  作cpu,而只能利用GIL保证同一时间只能有一个线程拿到数据。而在pypy和jpython中是没有GIL的
  python在使用多线程的时候,调用的是c语言的原生过程。
'''
'''
       python针对不同类型的代码执行效率也是不同的
  1、CPU密集型代码(各种循环处理、计算等),在这种情况下,由于计算工作多,ticks技术很快就会达到阀值,然后出发GIL的
  释放与再竞争(多个线程来回切换当然是需要消耗资源的),所以python下的多线程对CPU密集型代码并不友好。
  2、IO密集型代码(文件处理、网络爬虫等设计文件读写操作),多线程能够有效提升效率(单线程下有IO操作会进行IO等待,
  造成不必要的时间浪费,而开启多线程能在线程A等待时,自动切换到线程B,可以不浪费CPU的资源,从而能提升程序的执行
  效率)。所以python的多线程对IO密集型代码比较友好。
'''
'''
 主要要看任务的类型,我们把任务分为I/O密集型和计算密集型,而多线程在切换中又分为I/O切换和时间切换。如果任务属于是I/O密集型,
 若不采用多线程,我们在进行I/O操作时,势必要等待前面一个I/O任务完成后面的I/O任务才能进行,在这个等待的过程中,CPU处于等待
 状态,这时如果采用多线程的话,刚好可以切换到进行另一个I/O任务。这样就刚好可以充分利用CPU避免CPU处于闲置状态,提高效率。但是
 如果多线程任务都是计算型,CPU会一直在进行工作,直到一定的时间后采取多线程时间切换的方式进行切换线程,此时CPU一直处于工作状态,
 此种情况下并不能提高性能,相反在切换多线程任务时,可能还会造成时间和资源的浪费,导致效能下降。
这就是造成上面两种多线程结果不能的解释。
结论:I/O密集型任务,建议采取多线程,还可以采用多进程+协程的方式(例如:爬虫多采用多线程处理爬取的数据);
对于计算密集型任务,python此时就不适用了。
'''

       以上就是关于python多线程的介绍,本文有实例代码以及详细的注释,具有一定的学习参考价值,需要的朋友可以多看看,希望对大家理解python多线程有帮助。

文本转载自脚本之家

群英智防CDN,智能加速解决方案
标签: python多线程

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服