ndarray数组索引和切片怎么理解,用法是什么
Admin 2022-07-28 群英技术资讯 502 次浏览
索引和切片相当于是对数组中内容的读(read)或者查询(inquiry)。是我们获取有用信息(demanded infomation)的重要方法。
对于索引
对于切片
可以在一下代码中演示索引和切片操作:
import numpy as np data = np.array([0,1,2,3,4,5]) print(data[1]) print(data[2:4]) data_2dim = np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]]) print(data_2dim[1,0]) print(data_2dim[1][0]) print(data_2dim[1:4]) print(data_2dim[1:4][1:3][1][2])
运行结果如下:
1
[2 3]
4
4
[[ 4 5 6]
[ 7 8 9]
[10 11 12]]
12
[Finished in 1.3s]
总结一下,索引和切片都是对数组读的操作,都使用方括号[] (squre bracket)进行编号的框定。
特别要注意的是切片存放的变量和原来的数组变量在本质上共享同一片内存,如果修改了切片存放的变量,那么原来的数组的对应元素也会对应修改。如以下代码所示:
data = np.arange(10) data_slice = data[3:6] print(data) print(data_slice) data_slice[2] = 100 print(data) print(data_slice)
结果如下所示:
[0 1 2 3 4 5 6 7 8 9]
[3 4 5]
[ 0 1 2 3 4 100 6 7 8 9]
[ 3 4 100]
[Finished in 2.2s]
如果需要在修改切片的同时不改变原来数组中的数据,可以使用.copy()方法。对上述代码稍作修改,结果如下:
data = np.arange(10) data_slice = data[3:6].copy() print(data) print(data_slice) data_slice[2] = 100 print(data) print(data_slice)
[0 1 2 3 4 5 6 7 8 9]
[3 4 5]
[0 1 2 3 4 5 6 7 8 9]
[ 3 4 100]
[Finished in 2.5s]显示的问题
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了Python实现简单的索引排序与搜索功能,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
在日常工作中,PPT制作是常见的工作,如果制作创意类PPT,则无法通过自动化的形式生成,因为创意本身具有随机性,而自动化解决的是重复性工作,两者有所冲突。python-pptx是python处理PPT
这篇文章主要介绍了python中关于range()函数反向遍历的几种表达,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
这篇文章主要介绍了Python日志采集,在实际使用python做自动化测试过程中两种解决思路都可以使用,且都挺方便,其中对于思路1,还可以将代码进行更进一步的封装,需要的朋友可以参考下
这篇文章给大家分享的是python新式类和旧式类的内容,一些朋友对于python新式类和旧式类的区别以及使用不是很了解,因此下文就给大家来简单的介绍一下,本文对大家学习Python有一定的帮助,接下来就跟随小编来看看python新式类和旧式类不同在哪吧?
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008