pandas如何填充NaN值,方法是什么

Admin 2022-07-27 群英技术资讯 678 次浏览

今天这篇给大家分享的知识是“pandas如何填充NaN值,方法是什么”,小编觉得挺不错的,对大家学习或是工作可能会有所帮助,对此分享发大家做个参考,希望这篇“pandas如何填充NaN值,方法是什么”文章能帮助大家解决问题。

1. 参数解析

1.1 inplace参数

取值:True、False

True:直接修改原对象

False:创建一个副本,修改副本,原对象不变(缺省默认)

1.2 method参数

取值 : {‘pad’, ‘ffill’,‘backfill’, ‘bfill’, None}, default None

pad/ffill:用前一个非缺失值去填充该缺失值

backfill/bfill:用下一个非缺失值填充该缺失值

None:指定一个值去替换缺失值(缺省默认这种方式)

1.3 limit参数:

限制填充个数

1.4 axis参数

修改填充方向

补充

isnull 和 notnull 函数用于判断是否有缺失值数据

  • isnull:缺失值为True,非缺失值为False
  • notnull:缺失值为False,非缺失值为True

2. 代码实例

#导包
import pandas as pd
import numpy as np
from numpy import nan as NaN
df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]])
df1

代码结果:

     0    1    2
0  1.0  2.0  3.0
1  NaN  NaN  2.0
2  NaN  NaN  NaN
3  8.0  8.0  NaN

2.1 常数填充

2.1.1 用常数填充

#1.用常数填充
print (df1.fillna(100))
print ("-----------------------")
print (df1)

运行结果:

       0      1      2
0    1.0    2.0    3.0
1  100.0  100.0    2.0
2  100.0  100.0  100.0
3    8.0    8.0  100.0
-----------------------
     0    1    2
0  1.0  2.0  3.0
1  NaN  NaN  2.0
2  NaN  NaN  NaN
3  8.0  8.0  NaN

2.1.2 用字典填充

第key列的NaN用key对应的value值填充

df1.fillna({0:10,1:20,2:30})

运行结果:

      0     1     2
0   1.0   2.0   3.0
1  10.0  20.0   2.0
2  10.0  20.0  30.0
3   8.0   8.0  30.0

2.2 使用inplace参数

print (df1.fillna(0,inplace=True))
print ("-------------------------")
print (df1)

运行结果:

在这里插入代码片

2.3 使用method参数

1.method = 'ffill'/'pad':用前一个非缺失值去填充该缺失值

df2 = pd.DataFrame(np.random.randint(0,10,(5,5)))
df2.iloc[1:4,3] = None
df2.iloc[2:4,4] = None
print(df2)
print ("-------------------------")
print(df2.fillna(method='ffill'))

运行结果:

   0  1  2    3    4
0  8  4  4  5.0  6.0
1  5  2  8  NaN  7.0
2  6  3  1  NaN  NaN
3  5  4  9  NaN  NaN
4  6  5  4  6.0  9.0
-------------------------
   0  1  2    3    4
0  8  4  4  5.0  6.0
1  5  2  8  5.0  7.0
2  6  3  1  5.0  7.0
3  5  4  9  5.0  7.0
4  6  5  4  6.0  9.0

2.method = ‘bflii’/‘backfill’:用下一个非缺失值填充该缺失值

df2 = pd.DataFrame(np.random.randint(0,10,(5,5)))
df2.iloc[1:4,3] = None
df2.iloc[2:4,4] = None
print(df2)
print ("-------------------------")
print(df2.fillna(method='bfill'))

运行结果:

   0  1  2    3    4
0  1  0  4  1.0  3.0
1  4  6  4  NaN  2.0
2  4  9  2  NaN  NaN
3  9  7  3  NaN  NaN
4  6  1  3  5.0  5.0
-------------------------
   0  1  2    3    4
0  1  0  4  1.0  3.0
1  4  6  4  5.0  2.0
2  4  9  2  5.0  5.0
3  9  7  3  5.0  5.0
4  6  1  3  5.0  5.0

2.4 使用limit参数

用下一个非缺失值填充该缺失值且每列只填充2个

df2 = pd.DataFrame(np.random.randint(0,10,(5,5)))
df2.iloc[1:4,3] = None
df2.iloc[2:4,4] = None
print(df2)
print ("-------------------------")
print(df2.fillna(method='bfill', limit=2))

运行结果:

   0  1  2    3    4
0  2  0  4  4.0  0.0
1  7  9  9  NaN  1.0
2  1  7  3  NaN  NaN
3  8  5  8  NaN  NaN
4  8  6  2  4.0  4.0
-------------------------
   0  1  2    3    4
0  2  0  4  4.0  0.0
1  7  9  9  NaN  1.0
2  1  7  3  4.0  4.0
3  8  5  8  4.0  4.0
4  8  6  2  4.0  4.0

2.5 使用axis参数

axis=0 对每列数据进行操作

axis=1 对每行数据进行操作

df2 = pd.DataFrame(np.random.randint(0,10,(5,5)))
df2.iloc[1:4,3] = None
df2.iloc[2:4,4] = None
print(df2.fillna(method="ffill", limit=1, axis=1))

运行结果:

    0    1    2    3    4
0  0.0  4.0  9.0  7.0  2.0
1  6.0  5.0  0.0  0.0  3.0
2  8.0  8.0  8.0  8.0  NaN
3  5.0  5.0  6.0  6.0  NaN
4  7.0  5.0  7.0  4.0  1.0

还有一些pandas的基础运算请参考这篇文章->pandas | DataFrame基础运算以及空值填充

总结


到此这篇关于“pandas如何填充NaN值,方法是什么”的文章就介绍到这了,更多相关pandas如何填充NaN值,方法是什么内容,欢迎关注群英网络技术资讯频道,小编将为大家输出更多高质量的实用文章! 群英智防CDN,智能加速解决方案
标签: pandas 填充nan

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服