sklearn怎么样画决策树,具体过程是什么

Admin 2022-07-26 群英技术资讯 477 次浏览

这篇文章给大家分享的是sklearn怎么样画决策树,具体过程是什么。小编觉得挺实用的,因此分享给大家做个参考,文中的介绍得很详细,而要易于理解和学习,有需要的朋友可以参考,接下来就跟随小编一起了解看看吧。


目录
  • 利用sklearn画出决策树并保存为PDF
    • 下载Graphviz
  • python sklearn 决策树运用
    • 数据形式(tree.csv)

利用sklearn画出决策树并保存为PDF

下载Graphviz

进入官网下载并安装:

https://graphviz.gitlab.io/_pages/Download/Download_windows.html

并将下列路径配置为环境变量:

  • D:\software\Graphviz\bin

在cmd中测试:

  • dot -version

python代码

import numpy as np
import pandas as pd
from sklearn import tree
import graphviz
# x,y是sklearn中需要拟合的数据
x = np.array(exam_train)
y = np.array(classes_train)
clf = tree.DecisionTreeClassifier(criterion='entropy', class_weight='balanced', max_depth=25)
clf = clf.fit(x, y)
dot_data = tree.export_graphviz(clf, out_file=None, feature_names=None, filled=True, rounded=True)  # 重要参数可定制
graph = graphviz.Source(dot_data)
graph.render(view=True, format="pdf", filename="decisiontree_pdf")

可以生成一张贼帅的决策树PDF:

python sklearn 决策树运用

数据形式(tree.csv)

age look income orderly target
older ugly low yes no
young ugly high no no
young handsome low no no
young handsome high yes yes
young handsome medium yes yes
young handsome medium no no

python源代码:

# -*- coding:utf-8*-
# 将字典 转化为 sklearn 用的数据形式 数据型 矩阵
from sklearn.feature_extraction import DictVectorizer
import csv
from sklearn import preprocessing
from sklearn import tree

allElectronicsData = open('c:/pic/data/tree.csv','rb')
reader = csv.reader(allElectronicsData)
header = reader.next()
# print header
## 数据预处理
featureList = []
labelList = []
for row in reader:
    # print row[-1]
    labelList.append(row[-1])
    # 下面这几步的目的是为了让特征值转化成一种字典的形式,就可以调用sk-learn里面的DictVectorizer,直接将特征的类别值转化成0,1值
    rowDict = {}
    for i in range(1, len(row) - 1):
        rowDict[header[i]] = row[i]
    featureList.append(rowDict)

for each in featureList:
    print each

# Vectorize features
vec = DictVectorizer()
dummyX = vec.fit_transform(featureList).toarray()
print("dummyX:"+str(dummyX))
print(vec.get_feature_names())

# label的转化,直接用preprocessing的LabelBinarizer方法
lb = preprocessing.LabelBinarizer()
dummyY = lb.fit_transform(labelList)
print("dummyY:"+str(dummyY))
print("labelList:"+str(labelList))

#criterion是选择决策树节点的 标准 ,这里是按照“熵”为标准,即ID3算法;默认标准是gini index,即CART算法。
clf = tree.DecisionTreeClassifier()
clf = clf.fit(dummyX,dummyY)
print("clf:"+str(clf))
# 导入相关函数,可视化决策树
# 导出的结果是一个dot文件(在系统默认路劲),需要安装Graphviz才能将它住哪华为PDF或png格式
# 输出的dot文件可以使用graphvize软件转为PDF,graphvize安装目录中的bin目录放入到环境变量的Path中
# 使用如下命令
#cmd
# dot -Tpdf  c:/tree.dot -o c:/tree.pdf
#下载地址:http://www.graphviz.org/Download_windows.php
#生成dot文件
with open("c:/tree.dot",'w') as f:
    f = tree.export_graphviz(clf, feature_names= vec.get_feature_names(),out_file= f)

感谢各位的阅读,以上就是“sklearn怎么样画决策树,具体过程是什么”的内容了,经过本文的学习后,相信大家对sklearn怎么样画决策树,具体过程是什么都有更深刻的体会了吧。这里是群英网络,小编将为大家推送更多相关知识点的文章,欢迎关注! 群英智防CDN,智能加速解决方案

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服