如何利用OpenCV实现图像识别,并能替换的功能
Admin 2022-07-26 群英技术资讯 320 次浏览
OpenCV-Python是一个Python库,旨在解决计算机视觉问题。
OpenCV是一个开源的计算机视觉库,1999年由英特尔的Gary Bradski启动。Bradski在访学过程中注意到,在很多优秀大学的实验室中,都有非常完备的内部公开的计算机视觉接口。这些接口从一届学生传到另一届学生,对于刚入门的新人来说,使用这些接口比重复造轮子方便多了。这些接口可以让他们在之前的基础上更有效地开展工作。OpenCV正是基于为计算机视觉提供通用接口这一目标而被策划的。
安装opencv
pip3 install -i https://pypi.doubanio.com/simple/ opencv-python
思路:
1、首先区分三张图片:
base图片代表初始化图片;
template图片代表需要在大图中匹配的图片;
white图片为需要替换的图片。
2、然后template图片逐像素缩小匹配,设定阈值,匹配度到达阈值的图片,判定为在初始图片中;否则忽略掉。
3、匹配到最大阈值的地方,返回该区域的位置(x,y)
4、然后用white图片resize到相应的大小,填补到目标区域。
match函数:
"""检查模板图片中是否包含目标图片""" def make_cv2(photo1, photo2): global x, y, w, h, num_1,flag starttime = datetime.datetime.now() #读取base图片 img_rgb = cv2.imread(f'{photo1}') #读取template图片 template = cv2.imread(f'{photo2}') h, w = template.shape[:-1] print('初始宽高', h, w) res = cv2.matchTemplate(img_rgb, template, cv2.TM_CCOEFF_NORMED) print('初始最大相似度', res.max()) threshold = res.max() """,相似度小于0.2的,不予考虑;相似度在[0.2-0.75]之间的,逐渐缩小图片""" print(threshold) while threshold >= 0.1 and threshold <= 0.83: if w >= 20 and h >= 20: w = w - 1 h = h - 1 template = cv2.resize( template, (w, h), interpolation=cv2.INTER_CUBIC) res = cv2.matchTemplate(img_rgb, template, cv2.TM_CCOEFF_NORMED) threshold = res.max() print('宽度:', w, '高度:', h, '相似度:', threshold) else: break """达到0.75覆盖之前的图片""" if threshold > 0.8: loc = np.where(res >= threshold) x = int(loc[1]) y = int(loc[0]) print('覆盖图片左上角坐标:', x, y) for pt in zip(*loc[::-1]): cv2.rectangle( img_rgb, pt, (pt[0] + w, pt[1] + h), (255, 144, 51), 1) num_1 += 1 endtime = datetime.datetime.now() print("耗时:", endtime - starttime) overlay_transparent(x, y, photo1, photo3) else: flag = False
replace函数:
"""将目标图片镶嵌到指定坐标位置""" def overlay_transparent(x, y, photo1, photo3): #覆盖图片的时候上下移动的像素空间 y += 4 global w, h, num_2 background = cv2.imread(f'{photo1}') overlay = cv2.imread(f'{photo3}') """缩放图片大小""" overlay = cv2.resize(overlay, (w, h), interpolation=cv2.INTER_CUBIC) background_width = background.shape[1] background_height = background.shape[0] if x >= background_width or y >= background_height: return background h, w = overlay.shape[0], overlay.shape[1] if x + w > background_width: w = background_width - x overlay = overlay[:, :w] if y + h > background_height: h = background_height - y overlay = overlay[:h] if overlay.shape[2] < 4: overlay = np.concatenate([overlay, np.ones((overlay.shape[0], overlay.shape[1], 1), dtype=overlay.dtype) * 255],axis=2,) overlay_image = overlay[..., :3] mask = overlay[..., 3:] / 255.0 background[y:y + h,x:x + w] = (1.0 - mask) * background[y:y + h,x:x + w] + mask * overlay_image # path = 'result' path = '' cv2.imwrite(os.path.join(path, f'1.png'), background) num_2 += 1 print('插入成功。') init()
每次执行需要初始化x,y(图片匹配初始位置参数),w,h(图片缩放初始宽高)
x = 0 y = 0 w = 0 h = 0 flag = True threshold = 0 template = '' num_1 = 0 num_2 = 0 photo3 = '' """参数初始化""" def init(): global x, y, w, h, threshold, template,flag x = 0 y = 0 w = 0 h = 0 threshold = 0 template = ''
完整代码
import cv2 import datetime import os import numpy as np x = 0 y = 0 w = 0 h = 0 flag = True threshold = 0 template = '' num_1 = 0 num_2 = 0 photo3 = '' """参数初始化""" def init(): global x, y, w, h, threshold, template,flag x = 0 y = 0 w = 0 h = 0 threshold = 0 template = '' """检查模板图片中是否包含目标图片""" def make_cv2(photo1, photo2): global x, y, w, h, num_1,flag starttime = datetime.datetime.now() img_rgb = cv2.imread(f'{photo1}') template = cv2.imread(f'{photo2}') h, w = template.shape[:-1] print('初始宽高', h, w) res = cv2.matchTemplate(img_rgb, template, cv2.TM_CCOEFF_NORMED) print('初始最大相似度', res.max()) threshold = res.max() """,相似度小于0.2的,不予考虑;相似度在[0.2-0.75]之间的,逐渐缩小图片""" print(threshold) while threshold >= 0.1 and threshold <= 0.83: if w >= 20 and h >= 20: w = w - 1 h = h - 1 template = cv2.resize( template, (w, h), interpolation=cv2.INTER_CUBIC) res = cv2.matchTemplate(img_rgb, template, cv2.TM_CCOEFF_NORMED) threshold = res.max() print('宽度:', w, '高度:', h, '相似度:', threshold) else: break """达到0.75覆盖之前的图片""" if threshold > 0.8: loc = np.where(res >= threshold) x = int(loc[1]) y = int(loc[0]) print('覆盖图片左上角坐标:', x, y) for pt in zip(*loc[::-1]): cv2.rectangle( img_rgb, pt, (pt[0] + w, pt[1] + h), (255, 144, 51), 1) num_1 += 1 endtime = datetime.datetime.now() print("耗时:", endtime - starttime) overlay_transparent(x, y, photo1, photo3) else: flag = False """将目标图片镶嵌到指定坐标位置""" def overlay_transparent(x, y, photo1, photo3): y += 0 global w, h, num_2 background = cv2.imread(f'{photo1}') overlay = cv2.imread(f'{photo3}') """缩放图片大小""" overlay = cv2.resize(overlay, (w, h), interpolation=cv2.INTER_CUBIC) background_width = background.shape[1] background_height = background.shape[0] if x >= background_width or y >= background_height: return background h, w = overlay.shape[0], overlay.shape[1] if x + w > background_width: w = background_width - x overlay = overlay[:, :w] if y + h > background_height: h = background_height - y overlay = overlay[:h] if overlay.shape[2] < 4: overlay = np.concatenate([overlay, np.ones((overlay.shape[0], overlay.shape[1], 1), dtype=overlay.dtype) * 255],axis=2,) overlay_image = overlay[..., :3] mask = overlay[..., 3:] / 255.0 background[y:y + h,x:x + w] = (1.0 - mask) * background[y:y + h,x:x + w] + mask * overlay_image # path = 'result' path = '' cv2.imwrite(os.path.join(path, f'1.png'), background) num_2 += 1 print('插入成功。') init() if __name__ == "__main__": photo1 = "1.png" photo2 = "3.png" photo3 = "white.png" while flag == True: make_cv2(photo1, photo2) overlay_transparent(x, y, photo1, photo3)
执行结果:
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要为大家详细介绍了基于python实现双向链表,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
这篇文章主要为大家介绍了PyTorch搭建LSTM实现时间序列负荷预测,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
Python中的continue语句将控制返回到当前循环的开头。当遇到continue语句时,循环将不执行当前迭代中剩余的语句,而直接下一次迭代开始。
这篇文章主要介绍了python 用递归实现通用爬虫解析器的方法,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下
这篇文章给大家分享的是有关python的string库怎么用的内容,通过string库,我们能更便捷的对字符串进行高效处理,小编觉得挺实用的,因此分享给大家做个参考,接下来一起跟随小编看看吧。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008