Pytorch中怎么看占用GPU资源,GPU资源未释放怎样处理
Admin 2022-07-25 群英技术资讯 598 次浏览
import torch print(torch.cuda.current_device()) print(torch.cuda.device_count()) print(torch.cuda.get_device_name()) print(torch.cuda.is_available())
打开terminal输入nvidia-smi可以看到当前各个显卡及用户使用状况,如下图所示,使用kill -9 pid(需替换成具体的编号)即可杀掉占用资源的程序,杀完后结果如下图所示,可以发现再也没有对应自己的程序了!
补充一下师弟帮忙的记录截图,方便以后查询使用:
补充:如何处理Pytorch使用GPU后仍有GPU资源未释放的情况
使用PyTorch设置多线程(threads)进行数据读取(DataLoader),其实是假的多线程,他是开了N个子进程(PID都连着)进行模拟多线程工作,所以你的程序跑完或者中途kill掉主进程的话,子进程的GPU显存并不会被释放,需要手动一个一个kill才行
1.先关闭ssh(或者shell)窗口,退出重新登录
2.查看运行在gpu上的所有程序:
fuser -v /dev/nvidia*
3.kill掉所有(连号的)僵尸进程
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了教你利用Python+Turtle绘制简易版爱心表白,文中有非常详细的代码示例,对想要和男朋友或者女朋友表白的小伙伴们有很大帮助哟,需要的朋友可以参考下
在Python的标准库中给出了2个模块:_thread和threading,_thread是低级模块不支持守护线程,当主线程退出了时,全部子线程都会被强制退出了。而threading是高级模块,用作对_thread进行了封装支持守护线程。在大部分状况下人们只需要采用threading这个高级模块即可。
文件编码格式是最容易出错的问题之一。如果编码格式不正确,就会完全读取不出文件内容,出现类似于以下的错误, 让人完全不知所措:
我们使用Python的时候,需要导入模块、导入包等等。一些新手对于python导入方法不是很清楚,下面小编给大家分享一些python常见的导入方法,供大家参考学习。
验证码作为一种自然人的机器人的判别工具,被广泛的用于各种防止程序做自动化的场景中。传统的字符型验证安全性已经名存实亡的情况下,各种新型的验证码如雨后春笋般涌现,今天给大家分享一篇Python实现滑块验证码
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008