pytorch为何要进行梯度清零,方法是什么
Admin 2022-07-23 群英技术资讯 756 次浏览
调用backward()函数之前都要将梯度清零,因为如果梯度不清零,pytorch中会将上次计算的梯度和本次计算的梯度累加。
这样逻辑的好处是,当我们的硬件限制不能使用更大的bachsize时,使用多次计算较小的bachsize的梯度平均值来代替,更方便,坏处当然是每次都要清零梯度。
optimizer.zero_grad() output = net(input) loss = loss_f(output, target) loss.backward()
补充:Pytorch 为什么每一轮batch需要设置optimizer.zero_grad
CSDN上有人写过原因,但是其实写得繁琐了。
根据pytorch中的backward()函数的计算,当网络参量进行反馈时,梯度是被积累的而不是被替换掉;但是在每一个batch时毫无疑问并不需要将两个batch的梯度混合起来累积,因此这里就需要每个batch设置一遍zero_grad 了。
其实这里还可以补充的一点是,如果不是每一个batch就清除掉原有的梯度,而是比如说两个batch再清除掉梯度,这是一种变相提高batch_size的方法,对于计算机硬件不行,但是batch_size可能需要设高的领域比较适合,比如目标检测模型的训练。
关于这一点可以参考这里
关于backward()的计算可以参考这里
补充:pytorch 踩坑笔记之w.grad.data.zero_()
在使用pytorch实现多项线性回归中,在grad更新时,每一次运算后都需要将上一次的梯度记录清空,运用如下方法:
w.grad.data.zero_() b.grad.data.zero_()
但是,运行程序就会报如下错误:
报错,grad没有data这个属性,
原因是,在系统将w的grad值初始化为none,第一次求梯度计算是在none值上进行报错,自然会没有data属性
修改方法:添加一个判断语句,从第二次循环开始执行求导运算
for i in range(100): y_pred = multi_linear(x_train) loss = getloss(y_pred,y_train) if i != 0: w.grad.data.zero_() b.grad.data.zero_() loss.backward() w.data = w.data - 0.001 * w.grad.data b.data = b.data - 0.001 * b.grad.data
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了利用Python+Selenium+Pytesseract实现图片验证码识别,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下
这篇文章主要介绍了python中的编码和解码及\x和\u问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
这篇文章主要为大家详细介绍了如何利用Python语言实现双向RNN与堆叠的双向RNN,文中详细讲解了双向RNN与堆叠的双向RNN的原理及实现,需要的可以参考一下
Python调用Shell,有两种方法:os.system(cmd)或os.popen(cmd)脚本执行过程中的输出内容,下面这篇文章主要给大家介绍了关于Python面试之os.system()和os.popen()区别的相关资料,需要的朋友可以参考下
这篇文章给大家分享的是在Django项目怎么配置日志的内容。配置日记是比较基础的内容,也是需要掌握的,下本是应用场景和配置日志的相关教程,需要的朋友可以参考。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008