pytorch网络转移cuda的实现方法及步骤是什么
Admin 2022-07-23 群英技术资讯 406 次浏览
神经网络一般用GPU来跑,我们的神经网络框架一般也都安装的GPU版本,本文就简单记录一下GPU使用的编写。
GPU的设置不在model,而是在Train的初始化上。
self.GPU_IN_USE = torch.cuda.is_available()
就是返回这个可不可以用GPU的函数,当你的pytorch是cpu版本的时候,他就会返回False。
self.device = torch.device('cuda' if self.GPU_IN_USE else 'cpu')
torch.device是代表将torch.tensor分配到哪个设备的函数
接着是,我看到了一篇文章,原来就是将网络啊、数据啊、随机种子啊、损失函数啊、等等等等直接转移到CUDA上就好了!
转移模型:
self.model = Net(num_channels=1, upscale_factor=self.upscale_factor, base_channel=64, num_residuals=4).to(self.device)
设置cuda的随机种子:
torch.cuda.manual_seed(self.seed)
转移损失函数:
self.criterion.cuda()
转移数据:
data, target = data.to(self.device), target.to(self.device)
pytorch定义网络__init__()的时候,参数不能加“cuda()", 不然参数不包含在state_dict()中,比如下面这种写法是错误的
self.W1 = nn.Parameter(torch.FloatTensor(3,3), requires_grad=True).cuda()
应该去掉".cuda()"
self.W1 = nn.Parameter(torch.FloatTensor(3,3), requires_grad=True)
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章介绍了使用Django框架创建项目的方法,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
这篇文章主要为大家详细介绍了如何利用Python语言实现邮件自动下载以及附件解析功能,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下
在工作中难免会遇到需要批量整理文件的情况,当需要从一堆文件中将部分文件批量地转移时,如果手工一一转移难免浪费时间,这篇文章主要给大家介绍了关于如何在python中用os模块实现批量移动文件的相关资料,需要的朋友可以参考下
本文为大家整理了九个Python列表生成式的面试题(从简单到困难排序),可以帮助大家提高列表生成式的理解水平,感兴趣的小伙伴可以学习一下
python 生成对称矩阵的方法是什么?我们做开发的时候,常会遇到根据一段给定的数组,生成由这一段数组值构成的对称矩阵,这样的需求,那么使用python要怎么实现生成对称矩阵呢?下面我们一起来看看。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008