pytorch网络转移cuda的实现方法及步骤是什么

Admin 2022-07-23 群英技术资讯 406 次浏览

今天这篇给大家分享的知识是“pytorch网络转移cuda的实现方法及步骤是什么”,小编觉得挺不错的,对大家学习或是工作可能会有所帮助,对此分享发大家做个参考,希望这篇“pytorch网络转移cuda的实现方法及步骤是什么”文章能帮助大家解决问题。


神经网络一般用GPU来跑,我们的神经网络框架一般也都安装的GPU版本,本文就简单记录一下GPU使用的编写。

GPU的设置不在model,而是在Train的初始化上。

第一步是查看是否可以使用GPU

self.GPU_IN_USE = torch.cuda.is_available()

就是返回这个可不可以用GPU的函数,当你的pytorch是cpu版本的时候,他就会返回False。

然后是:

self.device = torch.device('cuda' if self.GPU_IN_USE else 'cpu')

torch.device是代表将torch.tensor分配到哪个设备的函数

接着是,我看到了一篇文章,原来就是将网络啊、数据啊、随机种子啊、损失函数啊、等等等等直接转移到CUDA上就好了!

于是下面就好理解多了:

转移模型:

self.model = Net(num_channels=1, upscale_factor=self.upscale_factor, base_channel=64, num_residuals=4).to(self.device)

设置cuda的随机种子:

torch.cuda.manual_seed(self.seed)

转移损失函数:

self.criterion.cuda()

转移数据:

data, target = data.to(self.device), target.to(self.device)

pytorch 网络定义参数的后面无法加.cuda()

pytorch定义网络__init__()的时候,参数不能加“cuda()", 不然参数不包含在state_dict()中,比如下面这种写法是错误的

self.W1 = nn.Parameter(torch.FloatTensor(3,3), requires_grad=True).cuda()

应该去掉".cuda()"

self.W1 = nn.Parameter(torch.FloatTensor(3,3), requires_grad=True)

到此这篇关于“pytorch网络转移cuda的实现方法及步骤是什么”的文章就介绍到这了,更多相关内容请搜索群英网络以前的文章或继续浏览下面的相关文章,希望大家以后多多支持群英网络!
群英智防CDN,智能加速解决方案

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服