NumPy如何实现topk函数操作,方法是什么

Admin 2022-07-22 群英技术资讯 444 次浏览

这篇文章主要讲解了“NumPy如何实现topk函数操作,方法是什么”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“NumPy如何实现topk函数操作,方法是什么”吧!

np.argpartition 难以解决topK

topK是常用的一个功能,在python中,numpy等计算库使用了丰富的底层优化,对于矩阵计算的效率远高于python的for-loop实现。因此,我们希望尽量用一些numpy函数的组合实现topK。

pytorch 库提供了topk函数,可以将高维数组沿某一维度(该维度共N项),选出最大(最小)的K项并排序。返回排序结果和index信息。奇怪的是,更轻量级的numpy库并没有直接提供 topK 函数。numpy只提供了argpartition 和 partition,可以将最大(最小)的K项排到前K位。以argpartition为例,最小的3项排到了前3位:

>>> x = np.array([3, 5, 6, 4, 2, 7, 1])
>>> x[np.argpartition(x, 3)]
array([2, 1, 3, 4, 5, 7, 6])

注意,argpartition实现的是 partial sorting,如上例,前3项和其余项被分开,但是两部分各自都是不排序的!而我们可能更想要topK的几项排好序(其余项则不作要求)。因此,下面提供一种基于argpartition的topK方法。

一个naive方法

最简单的方法自然是全排序,然后取前K项。缺点在于,要把topK之外的数据也进行排序,当K << N时较为浪费时间,复杂度为O ( n log ⁡ n ) O(n \log n)O(nlogn):

def naive_arg_topK(matrix, K, axis=0):
    """
    perform topK based on np.argsort
    :param matrix: to be sorted
    :param K: select and sort the top K items
    :param axis: dimension to be sorted.
    :return:
    """
    full_sort = np.argsort(matrix, axis=axis)
    return full_sort.take(np.arange(K), axis=axis)

# Example
>>> dists = np.random.permutation(np.arange(30)).reshape(6, 5)
array([[17, 28,  1, 24, 23,  8],
       [ 9, 21,  3, 22,  4,  5],
       [19, 12, 26, 11, 13, 27],
       [10, 15, 18, 14,  7, 16],
       [ 0, 25, 29,  2,  6, 20]])
>>> naive_arg_topK(dists, 2, axis=0)
array([[4, 2, 0, 4, 1, 1],
       [1, 3, 1, 2, 4, 0]])
>>> naive_arg_topK(dists, 2, axis=1)
array([[2, 5],
       [2, 4],
       [3, 1],
       [4, 0],
       [0, 3]])

基于partition的方法

对于 np.argpartition 函数,复杂度可能下降到 O ( n log ⁡ K ) O(n \log K)O(nlogK),很多情况下,K << N,此时naive方法有优化的空间。

以下方法首先选出 topK 项,然后仅对前topK项进行排序(matrix仅限2d-array)。

def partition_arg_topK(matrix, K, axis=0):
    """
    perform topK based on np.argpartition
    :param matrix: to be sorted
    :param K: select and sort the top K items
    :param axis: 0 or 1. dimension to be sorted.
    :return:
    """
    a_part = np.argpartition(matrix, K, axis=axis)
    if axis == 0:
        row_index = np.arange(matrix.shape[1 - axis])
        a_sec_argsort_K = np.argsort(matrix[a_part[0:K, :], row_index], axis=axis)
        return a_part[0:K, :][a_sec_argsort_K, row_index]
    else:
        column_index = np.arange(matrix.shape[1 - axis])[:, None]
        a_sec_argsort_K = np.argsort(matrix[column_index, a_part[:, 0:K]], axis=axis)
        return a_part[:, 0:K][column_index, a_sec_argsort_K]

# Example
>>> dists = np.random.permutation(np.arange(30)).reshape(6, 5)
array([[17, 28,  1, 24, 23,  8],
       [ 9, 21,  3, 22,  4,  5],
       [19, 12, 26, 11, 13, 27],
       [10, 15, 18, 14,  7, 16],
       [ 0, 25, 29,  2,  6, 20]])
>>> partition_arg_topK(dists, 2, axis=0)
array([[4, 2, 0, 4, 1, 1],
       [1, 3, 1, 2, 4, 0]])
>>> partition_arg_topK(dists, 2, axis=1)
array([[2, 5],
       [2, 4],
       [3, 1],
       [4, 0],
       [0, 3]])

大数据量测试

对shape(5000, 100000)的矩阵进行topK排序,测试时间为:

K partition(s) naive(s)
10 8.884 22.604
100 9.012 22.458
1000 8.904 22.506
5000 11.305 22.844

补充:python堆排序实现TOPK问题

# 构建小顶堆跳转def sift(li, low, higt):
    tmp = li[low]
    i = low
    j = 2 * i + 1
    while j <= higt:  # 情况2:i已经是最后一层
        if j + 1 <= higt and li[j + 1] < li[j]:  # 右孩子存在并且小于左孩子
            j += 1
        if tmp > li[j]:
            li[i] = li[j]
            i = j
            j = 2 * i + 1
        else:
            break  # 情况1:j位置比tmp小
    li[i] = tmp


def top_k(li, k):
    heap = li[0:k]
    # 建堆
    for i in range(k // 2 - 1, -1, -1):
        sift(heap, i, k - 1)
    for i in range(k, len(li)):
        if li[i] > heap[0]:
            heap[0] = li[i]
            sift(heap, 0, k - 1)
    # 挨个输出
    for i in range(k - 1, -1, -1):
        heap[0], heap[i] = heap[i], heap[0]
        sift(heap, 0, i - 1)
    return heap


li = [0, 8, 6, 2, 4, 9, 1, 4, 6]
print(top_k(li, 3))

到此这篇关于“NumPy如何实现topk函数操作,方法是什么”的文章就介绍到这了,更多相关内容请搜索群英网络以前的文章或继续浏览下面的相关文章,希望大家以后多多支持群英网络!
群英智防CDN,智能加速解决方案
标签: topk函数操作

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服