Pytorch怎样打印梯度,具体方法及代码是什么
Admin 2022-07-20 群英技术资讯 939 次浏览
打印梯度,检查网络学习情况
net = your_network().cuda() def train(): ... outputs = net(inputs) loss = criterion(outputs, targets) loss.backward() for name, parms in net.named_parameters(): print('-->name:', name, '-->grad_requirs:',parms.requires_grad, \ ' -->grad_value:',parms.grad) ...
name表示网络参数的名字; parms.requires_grad 表示该参数是否可学习,是不是frozen的; parm.grad 打印该参数的梯度值。
补充:pytorch的梯度计算
import torch from torch.autograd import Variable x = torch.Tensor([[1.,2.,3.],[4.,5.,6.]]) #grad_fn是None x = Variable(x, requires_grad=True) y = x + 2 z = y*y*3 out = z.mean() #x->y->z->out print(x) print(y) print(z) print(out) #结果: tensor([[1., 2., 3.], [4., 5., 6.]], requires_grad=True) tensor([[3., 4., 5.], [6., 7., 8.]], grad_fn=<AddBackward>) tensor([[ 27., 48., 75.], [108., 147., 192.]], grad_fn=<MulBackward>) tensor(99.5000, grad_fn=<MeanBackward1>)
若是关于graph leaves求导的结果变量是一个标量,那么gradient默认为None,或者指定为“torch.Tensor([1.0])”
若是关于graph leaves求导的结果变量是一个向量,那么gradient是不能缺省的,要是和该向量同纬度的tensor
out.backward() print(x.grad) #结果: tensor([[3., 4., 5.], [6., 7., 8.]]) #如果是z关于x求导就必须指定gradient参数: gradients = torch.Tensor([[2.,1.,1.],[1.,1.,1.]]) z.backward(gradient=gradients) #若z不是一个标量,那么就先构造一个标量的值:L = torch.sum(z*gradient),再关于L对各个leaf Variable计算梯度 #对x关于L求梯度 x.grad #结果: tensor([[36., 24., 30.], [36., 42., 48.]])
z.backward() print(x.grad) #报错:RuntimeError: grad can be implicitly created only for scalar outputs只能为标量创建隐式变量 x1 = Variable(torch.Tensor([[1.,2.,3.],[4.,5.,6.]])) x2 = Variable(torch.arange(4).view(2,2).type(torch.float), requires_grad=True) c = x2.mm(x1) c.backward(torch.ones_like(c)) # c.backward() #RuntimeError: grad can be implicitly created only for scalar outputs print(x2.grad)
从上面的例子中,out是常量,可以默认创建隐变量,如果反向传播的不是常量,要知道该矩阵的具体值,在网络中就是loss矩阵,方向传播的过程中就是拿该归一化的损失乘梯度来更新各神经元的参数。
看到一个博客这样说:loss = criterion(outputs, labels)对应loss += (label[k] - h) * (label[k] - h) / 2
就是求loss(其实我觉得这一步不用也可以,反向传播时用不到loss值,只是为了让我们知道当前的loss是多少)
我认为一定是要求loss的具体值,才能对比阈值进行分类,通过非线性激活函数,判断是否激活。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
本文详细讲解了Pytest框架之fixture,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
怎样用Python实现文本的滚动播放?对于文本滚动播放的应用场景有很多,我们经常能在网站的顶部看到,文本滚动播放功能也是比较实用的,下面我们就来看看用Python怎样写文本的滚动播放功能。
这篇文章主要weidajia 介绍了python目标检测非极大抑制NMS与Soft-NMS实现过程,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
断言就是世界结果与期望结果去对比,符合预期的测试就是pass,不符合预期的测试就是failed,下面这篇文章主要给大家介绍了关于python生产环境禁用assert断言的相关资料,需要的朋友可以参考下
python双端队列deque怎样理解?很多刚接触Python的朋友可能不是很了解双端队列deque,因此这篇文章就给大家来详细的介绍一下双端队列deque的实现,感兴趣的朋友就继续往下看吧。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008