使用Python怎么求t分布的置信区间

Admin 2022-07-15 群英技术资讯 362 次浏览

今天这篇我们来学习和了解“使用Python怎么求t分布的置信区间”,下文的讲解详细,步骤过程清晰,对大家进一步学习和理解“使用Python怎么求t分布的置信区间”有一定的帮助。有这方面学习需要的朋友就继续往下看吧!

如下所示:

interval=stats.t.interval(a,b,mean,std)

t分布的置信区 间

a:置信水平

b:检验量的自由度

mean:样本均值

std:样本标准差

from scipy import stats
import numpy as np
x=[10.1,10,9.8,10.5,9.7,10.1,9.9,10.2,10.3,9.9]
x1=np.array(x)
mean=x1.mean()
std=x1.std()
interval=stats.t.interval(0.95,len(x)-1,mean,std)
interval
Out[9]: (9.531674678392644, 10.568325321607357)

补充:用Python学分析 - t分布

1. t分布形状类似于标准正态分布

2. t分布是对称分布,较正态分布离散度强,密度曲线较标准正态分布密度曲线更扁平

3. 对于大型样本,t-值与z-值之间的差别很小

作用

- t分布纠正了未知的真实标准差的不确定性

- t分布明确解释了估计总体方差时样本容量的影响,是适合任何样本容量都可以使用的合适分布

应用

- 根据小样本来估计呈正态分布且方差未知的总体的均值

- 对于任何一种样本容量,真正的平均值抽样分布是t分布,因此,当存在疑问时,应使用t分布

样本容量对分布的影响

- 当样本容量在 30-35之间时,t分布与标准正态分布难以区分

- 当样本容量达到120时,t分布与标准正态分布实际上完全相同了

自由度df对分布的影响

- 样本方差使用一个估计的参数(平均值),所以计算置信区间时使用的t分布的自由度为 n - 1

- 由于引入额外的参数(自由度df),t分布比标准正态分布的方差更大(置信区间更宽)

  - 与标准正态分布曲线相比,自由度df越小,t分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高

  - 自由度df愈大,t分布曲线愈接近正态分布曲线,当自由度df= ∞ 时,t分布曲线为标准正态分布曲线

图表显示t分布

代码:

# 不同自由度的学生t分布与标准正态分布
import numpy as np
from scipy.stats import norm
from scipy.stats import t
import matplotlib.pyplot as plt
print('比较t-分布与标准正态分布')
x = np.linspace( -3, 3, 100)
plt.plot(x, t.pdf(x,1), label='df=1')
plt.plot(x, t.pdf(x,2), label='df=20')
plt.plot(x, t.pdf(x,100), label = 'df=100')
plt.plot( x[::5], norm.pdf(x[::5]),'kx', label='normal')
plt.legend()
plt.show()

运行结果:


以上就是关于“使用Python怎么求t分布的置信区间”的介绍了,感谢各位的阅读,如果大家想要了解更多相关的内容,欢迎关注群英网络,小编每天都会为大家更新不同的知识。
群英智防CDN,智能加速解决方案

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服