Python查询oracle速度慢怎么办,有什么技巧可以解决

Admin 2022-07-06 群英技术资讯 406 次浏览

关于“Python查询oracle速度慢怎么办,有什么技巧可以解决”的知识有一些人不是很理解,对此小编给大家总结了相关内容,具有一定的参考借鉴价值,而且易于学习与理解,希望能对大家有所帮助,有这个方面学习需要的朋友就继续往下看吧。

  

如下所示:

conn = cx_Oracle.connect('username/password@ip:port/servername')
cur = conn.cursor()
cur.execute('SELECT * FROM "db"."table"')

cur是一个迭代器,不要用fetchall一次性取完数据

直接 for row in cur 即可取数据

使用:sqlalchemy

MySQL-Python
    mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname>
 
pymysql
    mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>]
 
MySQL-Connector
    mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname>
 
cx_Oracle
    oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]
create_engine('oracle+cx_oracle://{a}:{b}@{c}:{d}/?service_name={e}'.format(a,b,c,d,e))
create_engine('mysql+pymysql://%(user)s:%(password)s@%(host)s/%(database)s?charset=utf8' % laoshifu_info)
 
df = pd.read_sql_table(table_name="table_name", con=engine)  
(the function to_sql is case-sensitive,Found the root cause from DBMS (mysql) autoconvert the table name to lowercase.)
df = pd.read_sql_query(sql=sql,con=engine)  # 很慢
ordf = pd.read_sql("SELECT * FROM db.table ",engine,chunksize=50000)
dflist = []
for chunk in ordf:
    dflist.append(chunk)
df = pd.concat(dflist)

补充:Python3 Cx_oracle 的一些使用技巧

Cx_oracle的一些使用技巧

工作中的数据库采用oracle。访问oracle数据库一般都采用cx_oracle包来完成,API很清晰,操作效率也比较高,而且oracle官方好像对cx_oracle也非常支持,提供了丰富的文档。这里讨论一些使用技巧,作为记录,可能对你也有用。

我最近用python写了一个小工具,这个工具根据客户端的请求查询数据库,并将结果集以json的方式返回。请求的格式如下:

    {
        fields : [
            {name : "project_id", type : "string"},
            {name : "project_name", type : "string"}
        ],
        
        sql : "select t.project_id, t.project_name from dp_project t"
    }

即,客户端描述自己想要的元数据信息(字段名称,字段类型),以及SQL语句,服务器端根据此信息查询数据库,并将返回组织成客户端在fields中描述的那样。

cx_oracle默认从cursor中fetch出来的数据是一个元组,按照SQL中的顺序组织,但是我希望返回的是一个字典结构,这个可以通过设置cursor的rowfactory属性来实现,定义一个rowfactory的回调函数:

    def makedict(self, cursor):
        cols = [d[0] for d in cursor.description]     
        def createrow(*args):
            return dict(zip(cols, args))     
        return createrow

这个函数返回一个函数:createrow。可能有点绕口,仔细想想就清晰了。cursor中带有足够的信息来生成这个字典,如cursor的description的值为:

   [
   ('PROJECT_ID', <;type 'cx_Oracle.STRING'>, 40, 40, 0, 0, 0), 
   ('PROJECT_NAME', <;type 'cx_Oracle.STRING'>, 50, 50, 0, 0, 1)
   ]

我们需要的是cursor.description的第一列,zip函数将cols和默认的那个元组合成为一个新的元组,再用dict转换为一个新的字典对象返回。

然后将这个返回函数的函数注册给cursor的rowfactory即可:

 cursor.rowfactory = self.makedict(cursor)

这样,我们使用cursor.fetchall/fetchone的时候,取出来的就成为一个字典对象,很方便将其序列化为json格式返回。

另一个技巧是关于将查询到的结果中,字符串类型的字段转换为unicode,数值类型的不做处理:

    def outtypehandler(self, cursor, name, dtype, size, p, s):
        if dtype in (oracle.STRING, oracle.FIXED_CHAR):
            return cursor.var(unicode, size, cursor.arraysize)

将connection对象的outputtypehandler注册为此函数即可:

   connection = oracle.connect(self.constr)
   connection.outputtypehandler = self.outtypehandler

通用查询的这个小工具还在开发中,等完成了再整理一下。


以上就是关于“Python查询oracle速度慢怎么办,有什么技巧可以解决”的相关知识,感谢各位的阅读,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注群英网络,小编每天都会为大家更新不同的知识。
群英智防CDN,智能加速解决方案

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服