pytorch中的nn.Sequential(*net[3: 5])表示什么,怎么应用的

Admin 2022-07-01 群英技术资讯 359 次浏览

这篇文章给大家分享的是pytorch中的nn.Sequential(*net[3: 5])表示什么,怎么应用的。小编觉得挺实用的,因此分享给大家做个参考,文中的介绍得很详细,而要易于理解和学习,有需要的朋友可以参考,接下来就跟随小编一起了解看看吧。



看到代码里面有这个

1 class ResNeXt101(nn.Module):
    2 def __init__(self):
        3 super(ResNeXt101, self).__init__()
        4 net = resnext101()
        # print(os.getcwd(), net)

        5 net = list(net.children())  # net.children()得到resneXt 的表层网络
        # for i, value in enumerate(net):
        #     print(i, value)
        6 self.layer0 = nn.Sequential(net[:3])  # 将前三层打包0, 1, 2两层
        print(self.layer0)
        7 self.layer1 = nn.Sequential(*net[3: 5])  # 将3, 4两层打包
        8 self.layer2 = net[5]
        9 self.layer3 = net[6]

可以看到代码中的第六行(序号自己去掉,我打上去的) self.layer0 = nn.Sequential(net[:3])
第七行self.layer1 = nn.Sequential(*net[3: 5])
有一个nn.Sequential(net[:3])
nn.Sequential(*net[3: 5])
今天不讲nn.Sequential()用法,意义,作用因为我也不咋明白。惊天就说*net[3: 5]这个东西为啥要带“ * ”
当代码中不带*的时候,运行会出现以下问题


意思就是列表不是子类,就是说参数不对

net = list(net.children())

这一行代码是将模型的每一层取出来构建一个列表,自己试着打印就可以。大概的输出就是[conv(),BatchNorm2d(), ReLU,MaxPool2d]等等


总共是是个元素,和一般的列表不太一样。

当我们取net[:3]的时候,传进去的参数是一个列表,但是我们用*net[:3]的时候传进去的是单个元素

list1 = ["conv", ("relu", "maxing"), ("relu", "maxing", 3), 3]
list2 = [list1[:1]]
list3 = [*list1[:1]]
print("list2:{}, *list1[:2]:{}".format(list1[:1], *list1[:1]))


结果不带的是列表,带的是元素,所以nn.Sequential(*net[3: 5])中的*net[3: 5]就是给nn.Sequential()这个容器中传入多个层。


感谢各位的阅读,以上就是“pytorch中的nn.Sequential(*net[3: 5])表示什么,怎么应用的”的内容了,经过本文的学习后,相信大家对pytorch中的nn.Sequential(*net[3: 5])表示什么,怎么应用的都有更深刻的体会了吧。这里是群英网络,小编将为大家推送更多相关知识点的文章,欢迎关注! 群英智防CDN,智能加速解决方案

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服