pytorch两个GPU同时训练怎么实现,会有遇到哪些问题

Admin 2022-06-28 群英技术资讯 520 次浏览

这篇文章主要介绍“pytorch两个GPU同时训练怎么实现,会有遇到哪些问题”的相关知识,下面会通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“pytorch两个GPU同时训练怎么实现,会有遇到哪些问题”文章能帮助大家解决问题。



使用场景

我有两个GPU卡。我希望我两个GPU能并行运行两个网络模型。

代码

错误代码1:

#对于0号GPU
os.environ['CUDA_VISIBLE_DEVICES']='0,1'
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#对于1号GPU
os.environ['CUDA_VISIBLE_DEVICES']='0,1'
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")

0号GPU不报错,1号GPU报错。错误如下

RuntimeError: Expected tensor for argument #1 ‘input' to have the same device as tensor for argument #2 ‘weight'; but device 0 does not equal 1 (while checking arguments for cudnn_convolution)

错误代码2:

#对于0号GPU
os.environ['CUDA_VISIBLE_DEVICES']='0'
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#对于1号GPU
os.environ['CUDA_VISIBLE_DEVICES']='1'
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")

0号GPU不报错,1号GPU报错。错误如下

CUDA: invalid device ordinal

正确代码如下:

#对于0号GPU
os.environ['CUDA_VISIBLE_DEVICES']='0'
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#对于1号GPU
os.environ['CUDA_VISIBLE_DEVICES']='1'
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

pytorch 多个gpu遇到的问题

目前所在学校的计算机系自己搭建了个GPU Farm,设备是GTX 1080 Ti的,看起来还算ok,但其实细究起来还挺鸡肋的。但是总对于数据量巨大的项目,还是需要跑代码吧,将就着用了。因为资源有限,分配到超过1个gpu需要排队,所以从来没尝试过使用多个gpu。最近由于数据量变大,也急于取得进展,因此开始尝试分配多个gpu。使用的过程中出现的问题,在此做个记录。

首先,因为不同平台的GPU Farm搭建的规则不一样,如何分配到多个gpu在此就不做记录了。不得不说,学校的GPU Farm资源少的可怜,分配到2个gpu常常要排队半小时。

以下罗列遇到的问题。

torch.nn.DataParallel()

因为对pytorch的理解还不够深,因此为了提高速度,从官网上注意到DataParallel,据说最简单的方法是直接用

model = torch.nn.DataParallel(model)
model.cuda()

来实现,但是万万没想到它给我带来的时间浪费还真不是一星半点。

首先我分配到了2个gpu设备,之后在我的代码中只添加了如上的命令,而后便收到了如下报错

ValueError: only one element tensors can be converted to Python scalars

这个报错直指我的 loss.item(),通过debug我发现它的tensor dimension的确变成了2个elements。在做了更多无效debug和上网查阅之后,我鬼使神差地调整回了1个gpu想看看效果会不会不一样,然后居然顺利运行了。

稍微思考一下,感觉倒是很合理。假设两个gpu并行同时各自训练一个batch,那么得到的loss自然应该是2个elements,浅显地认为将其看做两个batch训练的loss结果就可以了。

目前手头有比较急于出结果的数据集和项目,因此暂时没有过多的时间去研究具体为什么会有这种情况的出现,不过这也证实了想要合理正确地运用多个gpu同时作业,显然不是那么简单地几行代码就能解决的。


到此这篇关于“pytorch两个GPU同时训练怎么实现,会有遇到哪些问题”的文章就介绍到这了,更多相关内容请搜索群英网络以前的文章或继续浏览下面的相关文章,希望大家以后多多支持群英网络!
群英智防CDN,智能加速解决方案

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服