Pytorch搭建ShuffleNetv2怎么实现,方法是什么
Admin 2022-06-27 群英技术资讯 398 次浏览
def channel_shuffle(x: Tensor, groups: int) -> Tensor: batch_size, num_channels, height, width = x.size() channels_per_group = num_channels // groups # reshape # [batch_size, num_channels, height, width] -> [batch_size, groups, channels_per_group, height, width] x = x.view(batch_size, groups, channels_per_group, height, width) x = torch.transpose(x, 1, 2).contiguous() # flatten x = x.view(batch_size, -1, height, width) return x
class InvertedResidual(nn.Module): def __init__(self, input_c: int, output_c: int, stride: int): super(InvertedResidual, self).__init__() if stride not in [1, 2]: raise ValueError("illegal stride value.") self.stride = stride assert output_c % 2 == 0 branch_features = output_c // 2 # 当stride为1时,input_channel应该是branch_features的两倍 # python中 '<<' 是位运算,可理解为计算×2的快速方法 assert (self.stride != 1) or (input_c == branch_features << 1) if self.stride == 2: self.branch1 = nn.Sequential( self.depthwise_conv(input_c, input_c, kernel_s=3, stride=self.stride, padding=1), nn.BatchNorm2d(input_c), nn.Conv2d(input_c, branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True) ) else: self.branch1 = nn.Sequential() self.branch2 = nn.Sequential( nn.Conv2d(input_c if self.stride > 1 else branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True), self.depthwise_conv(branch_features, branch_features, kernel_s=3, stride=self.stride, padding=1), nn.BatchNorm2d(branch_features), nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True) ) @staticmethod def depthwise_conv(input_c: int, output_c: int, kernel_s: int, stride: int = 1, padding: int = 0, bias: bool = False) -> nn.Conv2d: return nn.Conv2d(in_channels=input_c, out_channels=output_c, kernel_size=kernel_s, stride=stride, padding=padding, bias=bias, groups=input_c) def forward(self, x: Tensor) -> Tensor: if self.stride == 1: x1, x2 = x.chunk(2, dim=1) out = torch.cat((x1, self.branch2(x2)), dim=1) else: out = torch.cat((self.branch1(x), self.branch2(x)), dim=1) out = channel_shuffle(out, 2) return out
class ShuffleNetV2(nn.Module): def __init__(self, stages_repeats: List[int], stages_out_channels: List[int], num_classes: int = 1000, inverted_residual: Callable[..., nn.Module] = InvertedResidual): super(ShuffleNetV2, self).__init__() if len(stages_repeats) != 3: raise ValueError("expected stages_repeats as list of 3 positive ints") if len(stages_out_channels) != 5: raise ValueError("expected stages_out_channels as list of 5 positive ints") self._stage_out_channels = stages_out_channels # input RGB image input_channels = 3 output_channels = self._stage_out_channels[0] self.conv1 = nn.Sequential( nn.Conv2d(input_channels, output_channels, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(output_channels), nn.ReLU(inplace=True) ) input_channels = output_channels self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # Static annotations for mypy self.stage2: nn.Sequential self.stage3: nn.Sequential self.stage4: nn.Sequential stage_names = ["stage{}".format(i) for i in [2, 3, 4]] for name, repeats, output_channels in zip(stage_names, stages_repeats, self._stage_out_channels[1:]): seq = [inverted_residual(input_channels, output_channels, 2)] for i in range(repeats - 1): seq.append(inverted_residual(output_channels, output_channels, 1)) setattr(self, name, nn.Sequential(*seq)) input_channels = output_channels output_channels = self._stage_out_channels[-1] self.conv5 = nn.Sequential( nn.Conv2d(input_channels, output_channels, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(output_channels), nn.ReLU(inplace=True) ) self.fc = nn.Linear(output_channels, num_classes) def _forward_impl(self, x: Tensor) -> Tensor: # See note [TorchScript super()] x = self.conv1(x) x = self.maxpool(x) x = self.stage2(x) x = self.stage3(x) x = self.stage4(x) x = self.conv5(x) x = x.mean([2, 3]) # global pool x = self.fc(x) return x def forward(self, x: Tensor) -> Tensor: return self._forward_impl(x)
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
Splinter是一个使用Python测试Web应用程序的开源工具,可以自动化浏览器操作,使用Splinter可以使用pyhton脚本来实现,具体安装及操作方法跟随小编一起看看吧
这篇文章主要介绍了python Copula实现绘制散点模型,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的朋友可以参考一下
详解Python列表的常用操作及应用是怎样的,下文的讲解详细,步骤过程清晰,对大家进一步学习和理解相关知识有一定的帮助。有这方面学习需要的朋友就继续往下看吧!
堆积柱状图有堆积柱状图的好处,比如说我们可以很方便地看到多分类总和的趋势,下面这篇文章主要给大家介绍了关于使用matplotlib绘制并排柱状图的相关资料,需要的朋友可以参考下
python开发中时长到货币格式化的问题,一般情况下可以使用locale模块。但是这个模块使用起来不是那么顺手,今天我为大家介绍一个很好用的方
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008