opencv模板匹配中边框重复的情况怎么解决
Admin 2022-06-27 群英技术资讯 544 次浏览
1、目标匹配函数:cv2.matchTemplate()
res=cv2.matchTemplate(image, templ, method, result=None, mask=None)
image:待搜索图像
templ:模板图像
result:匹配结果
method:计算匹配程度的方法,主要有以下几种:
待检测的图片如下,需要检测里面金币的位置
需要检测金币的模板如下:
2、基本的多对象模板匹配效果代码如下:
import cv2 import numpy as np img_rgb = cv2.imread('mario.jpg') img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY) template = cv2.imread('mario_coin.jpg', 0) h, w = template.shape[:2] res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED) threshold = 0.8 # 取匹配程度大于%80的坐标 loc = np.where(res >= threshold) #np.where返回的坐标值(x,y)是(h,w),注意h,w的顺序 for pt in zip(*loc[::-1]): bottom_right = (pt[0] + w, pt[1] + h) cv2.rectangle(img_rgb, pt, bottom_right, (0, 0, 255), 2) cv2.imwrite("001.jpg",img_rgb) cv2.imshow('img_rgb', img_rgb) cv2.waitKey(0)
检测效果如下:
通过上图可以看到对同一个图有多个框标定,需要去重,只需要保留一个
解决方案:对于使用同一个待检区域使用NMS进行去掉重复的矩形框
3、使用NMS对模板匹配出来的矩形框进行去掉临近重复的,代码如下:
import cv2 import time import numpy as np def py_nms(dets, thresh): """Pure Python NMS baseline.""" #x1、y1、x2、y2、以及score赋值 # (x1、y1)(x2、y2)为box的左上和右下角标 x1 = dets[:, 0] y1 = dets[:, 1] x2 = dets[:, 2] y2 = dets[:, 3] scores = dets[:, 4] #每一个候选框的面积 areas = (x2 - x1 + 1) * (y2 - y1 + 1) #order是按照score降序排序的 order = scores.argsort()[::-1] # print("order:",order) keep = [] while order.size > 0: i = order[0] keep.append(i) #计算当前概率最大矩形框与其他矩形框的相交框的坐标,会用到numpy的broadcast机制,得到的是向量 xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) #计算相交框的面积,注意矩形框不相交时w或h算出来会是负数,用0代替 w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h #计算重叠度IOU:重叠面积/(面积1+面积2-重叠面积) ovr = inter / (areas[i] + areas[order[1:]] - inter) #找到重叠度不高于阈值的矩形框索引 inds = np.where(ovr <= thresh)[0] # print("inds:",inds) #将order序列更新,由于前面得到的矩形框索引要比矩形框在原order序列中的索引小1,所以要把这个1加回来 order = order[inds + 1] return keep def template(img_gray,template_img,template_threshold): ''' img_gray:待检测的灰度图片格式 template_img:模板小图,也是灰度化了 template_threshold:模板匹配的置信度 ''' h, w = template_img.shape[:2] res = cv2.matchTemplate(img_gray, template_img, cv2.TM_CCOEFF_NORMED) start_time = time.time() loc = np.where(res >= template_threshold)#大于模板阈值的目标坐标 score = res[res >= template_threshold]#大于模板阈值的目标置信度 #将模板数据坐标进行处理成左上角、右下角的格式 xmin = np.array(loc[1]) ymin = np.array(loc[0]) xmax = xmin+w ymax = ymin+h xmin = xmin.reshape(-1,1)#变成n行1列维度 xmax = xmax.reshape(-1,1)#变成n行1列维度 ymax = ymax.reshape(-1,1)#变成n行1列维度 ymin = ymin.reshape(-1,1)#变成n行1列维度 score = score.reshape(-1,1)#变成n行1列维度 data_hlist = [] data_hlist.append(xmin) data_hlist.append(ymin) data_hlist.append(xmax) data_hlist.append(ymax) data_hlist.append(score) data_hstack = np.hstack(data_hlist)#将xmin、ymin、xmax、yamx、scores按照列进行拼接 thresh = 0.3#NMS里面的IOU交互比阈值 keep_dets = py_nms(data_hstack, thresh) print("nms time:",time.time() - start_time)#打印数据处理到nms运行时间 dets = data_hstack[keep_dets]#最终的nms获得的矩形框 return dets if __name__ == "__main__": img_rgb = cv2.imread('mario.jpg')#需要检测的图片 img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)#转化成灰色 template_img = cv2.imread('mario_coin.jpg', 0)#模板小图 template_threshold = 0.8#模板置信度 dets = template(img_gray,template_img,template_threshold) count = 0 for coord in dets: cv2.rectangle(img_rgb, (int(coord[0]),int(coord[1])), (int(coord[2]),int(coord[3])), (0, 0, 255), 2) cv2.imwrite("result.jpg",img_rgb)
检测效果如下所示:
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了OpenCV图像处理中常用的几个图像几何变换:裁剪、放大、缩小、平移、错切、镜像、旋转、透视等。文中示例代码非常详细,需要的朋友可以参考一下
这篇文章主要为大家详细介绍了Python利用Django完整的开发一个博客系统,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
这篇文章主要介绍了Python 中数组和数字相乘时的注意事项说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
这篇文章主要介绍了python中关于range()函数反向遍历的几种表达,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
游戏界面中文字也是非常常见的元素之一,pygame专门提供了Font模块来支持文字的显示,下面这篇文章主要给大家介绍了关于pygame学习笔记之设置字体及显示中文的相关资料,需要的朋友可以参考下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008