基于Python实现层次分析法的思路及方法是什么
Admin 2022-06-27 群英技术资讯 301 次浏览
假设我们遇到如下问题:
①对于M个方案,每个方案有N个属性,在已知各个方案每个属性值&&任意两个属性的重要程度的前提下,如何选择最优的方案?
②对于一个层级结构,在已知各底层指标相互之间的重要程度下,如何确定各底层指标对最高级指标的权值?
… …
此时,便可用层次分析法将我们的主观想法――“谁比谁重要”转换为客观度量――“权值”
层次分析法的基本思想是将复杂问题分为若干层次和若干因素,在同一层次的各要素之间简单地进行比较判断和计算,并评估每层评价指标对上一层评价指标的重要程度,确定因素权重,从而为选择最优方案提出依据。步骤如下:
(1)根据自己体系中的关联及隶属关系构建有层次的结构模型,一般分为三层,分别为最高层、中间层和最低层。
(2)构造判断矩阵
假设该层有n个评价指标u1, u2, …, un,设cij为ui相对于uj的重要程度,根据公式列出的1-9标度法,判断两两评价指标之间的重要性。
根据比较得出判断矩阵:
C=(cij)n*n其属性为cij>0, cji=1/cij,cii=1
(3)层次单排序:从下往上,对于每一层的每个判断矩阵,计算权向量和一致性检验。
计算矩阵C的最大特征根λmax及对应的特征向量(P1,P2,…, Pn)
一致性指标定义为:
CI(Consistency Ratio)称为一致性比例。CI=0时,具有完全一致性;CI接近于0,具有满意的一致性;CI越大,不一致性越严重。
一致性比率定义为:
其中RI称为随机性指标,参照表如下:
只有当CR<0.1,则认为该判断矩阵通过了一致性检验,即该矩阵自相矛盾产生的误差可忽略。将矩阵C最大特征根对应的特征向量元素作归一化处理,即可得到对应的权重集(C1,C2,…,Cn)。
(4)层次总排序
从上往下,依次计算每一层各指标对最上层指标的权值,以及每一层的综合一致性比率CR。
由于层次分析法选用1-9标度构建判断矩阵,而大部分时候我们自己也不能很好度量重要性的程度,故赵中奇提出用-1,0,1三标度来构建判断矩阵。同时,自动调整判断矩阵,消除前后时刻主观比较重要性时的矛盾现象,即让矩阵变为一致性矩阵(CR=0)。构建并调整判断矩阵以及算权值向量的步骤如下:
(1)初始化m=1
a、确定比较矩阵C=(cij)n*n的第m行元素
b、划分指标集合Dm={j|j=m+1,…,n}为
Hm={j|cmj=-1,j∈Dm}、Mm ={j|cmj=0,j∈Dm}与Lm={j|cmj=1,j∈Dm}
并构造集合为,其中×表示集合的笛卡尔积
c、若DLm、DMm、DHm全为空集,转d,否则令:
d、若m=n-1,转第二步,否则令m=m+1,转回a
(2)求比较矩阵C
(3)求B=(bij)n*n,其中
(4)求A=(aij)n*n的特征向量,作为各评价指标的相对权重值,其中:
由于网上找到的代码大多只能算三层的体系,而且没有赵中奇论文中的自调节层次分析法代码。因此,自己写了一个可以计算超过3层的层次分析法和自调节层次分析法代码!
构建如下4层体系
层次分析法得到的权值
判断矩阵就不列出来了了,可以在代码里找到,得到第四层对A的权值条形图如下:
自调节层次分析法得到的权值
自调节层次分析法对高阶判断矩阵更有优势,而算低阶判断矩阵时的结果和层次分析法差不多。
代码包括了层次分析法与自调节层次分析法的实例,运行的时候注释掉其中一个就行!
""" Created on Tue Jan 26 10:12:30 2021 自适应层数的层次分析法求权值 @author: lw """ import numpy as np import itertools import matplotlib.pyplot as plt #自适应层数的层次分析法 class AHP(): ''' 注意:python中list与array运算不一样,严格按照格式输入! 本层次分析法每个判断矩阵不得超过9阶,各判断矩阵必须是正互反矩阵 FA_mx:下一层对上一层的判断矩阵集(包含多个三维数组,默认从目标层向方案层依次输入判断矩阵。同层的判断矩阵按顺序排列,且上层指标不共用下层指标) string:默认为'norm'(经典的层次分析法,需输入9标度判断矩阵),若为'auto'(自调节层次分析法,需输入3标度判断矩阵) ''' #初始化函数 def __init__(self,FA_mx,string='norm'): self.RI=np.array([0,0,0.58,0.9,1.12,1.24,1.32,1.41,1.45,1.49]) #平均随机一致性指标 if string=='norm': self.FA_mx=FA_mx #所有层级的判断矩阵 elif string=='auto': self.FA_mx=[] for i in range(len(FA_mx)): temp=[] for j in range(len(FA_mx[i])): temp.append(self.preprocess(FA_mx[i][j])) self.FA_mx.append(temp) #自调节层次分析法预处理后的所有层级的判断矩阵 self.layer_num=len(FA_mx) #层级数目 self.w=[] #所有层级的权值向量 self.CR=[] #所有层级的单排序一致性比例 self.CI=[] #所有层级下每个矩阵的一致性指标 self.RI_all=[] #所有层级下每个矩阵的平均随机一致性指标 self.CR_all=[] #所有层级的总排序一致性比例 self.w_all=[] #所有层级指标对目标的权值 #输入单个矩阵算权值并一致性检验(特征根法精确求解) def count_w(self,mx): n=mx.shape[0] eig_value, eigen_vectors=np.linalg.eig(mx) maxeig=np.max(eig_value) #最大特征值 maxindex=np.argmax(eig_value) #最大特征值对应的特征向量 eig_w=eigen_vectors[:,maxindex]/sum(eigen_vectors[:,maxindex]) #权值向量 CI=(maxeig-n)/(n-1) RI=self.RI[n-1] if(n<=2 and CI==0): CR=0.0 else: CR=CI/RI if(CR<0.1): return CI,RI,CR,list(eig_w.T) else: print('该%d阶矩阵一致性检验不通过,CR为%.3f'%(n,CR)) return -1.0,-1.0,-1.0,-1.0 #计算单层的所有权值与CR def onelayer_up(self,onelayer_mx,index): num=len(onelayer_mx) #该层矩阵个数 CI_temp=[] RI_temp=[] CR_temp=[] w_temp=[] for i in range(num): CI,RI,CR,eig_w=self.count_w(onelayer_mx[i]) if(CR>0.1): print('第%d层的第%d个矩阵未通过一致性检验'%(index,i+1)) return CI_temp.append(CI) RI_temp.append(RI) CR_temp.append(CR) w_temp.append(eig_w) self.CI.append(CI_temp) self.RI_all.append(RI_temp) self.CR.append(CR_temp) self.w.append(w_temp) #计算单层的总排序及该层总的一致性比例 def alllayer_down(self): self.CR_all.append(self.CR[self.layer_num-1]) self.w_all.append(self.w[self.layer_num-1]) for i in range(self.layer_num-2,-1,-1): if(i==self.layer_num-2): temp=sum(self.w[self.layer_num-1],[]) #列表降维,扁平化处理,取上一层的权值向量 CR_temp=[] w_temp=[] CR=sum(np.array(self.CI[i])*np.array(temp))/sum(np.array(self.RI_all[i])*np.array(temp)) if(CR>0.1): print('第%d层的总排序未通过一致性检验'%(self.layer_num-i)) return for j in range(len(self.w[i])): shu=temp[j] w_temp.append(list(shu*np.array(self.w[i][j]))) temp=sum(w_temp,[]) #列表降维,扁平化处理,取上一层的总排序权值向量 CR_temp.append(CR) self.CR_all.append(CR_temp) self.w_all.append(w_temp) return #计算所有层的权值与CR,层次总排序 def run(self): for i in range(self.layer_num,0,-1): self.onelayer_up(self.FA_mx[i-1],i) self.alllayer_down() return #自调节层次分析法的矩阵预处理过程 def preprocess(self,mx): temp=np.array(mx) n=temp.shape[0] for i in range(n-1): H=[j for j,x in enumerate(temp[i]) if j>i and x==-1] M=[j for j,x in enumerate(temp[i]) if j>i and x==0] L=[j for j,x in enumerate(temp[i]) if j>i and x==1] DL=sum([[i for i in itertools.product(H,M)],[i for i in itertools.product(H,L)],[i for i in itertools.product(M,L)]],[]) DM=[i for i in itertools.product(M,M)] DH=sum([[i for i in itertools.product(L,H)],[i for i in itertools.product(M,H)],[i for i in itertools.product(L,M)]],[]) if DL: for j in DL: if(j[0]<j[1] and i<j[0]): temp[int(j[0])][int(j[1])]=1 if DM: for j in DM: if(j[0]<j[1] and i<j[0]): temp[int(j[0])][int(j[1])]=0 if DH: for j in DH: if(j[0]<j[1] and i<j[0]): temp[int(j[0])][int(j[1])]=-1 for i in range(n): for j in range(i+1,n): temp[j][i]=-temp[i][j] A=[] for i in range(n): atemp=[] for j in range(n): a0=0 for k in range(n): a0+=temp[i][k]+temp[k][j] atemp.append(np.exp(a0/n)) A.append(atemp) return np.array(A) #%%测试函数 if __name__=='__main__' : ''' # 层次分析法的经典9标度矩阵 goal=[] #第一层的全部判断矩阵 goal.append(np.array([[1, 3], [1/3 ,1]])) criteria1 = np.array([[1, 3], [1/3,1]]) criteria2=np.array([[1, 1,3], [1,1,3], [1/3,1/3,1]]) c_all=[criteria1,criteria2] #第二层的全部判断矩阵 sample1 = np.array([[1, 1], [1, 1]]) sample2 = np.array([[1,1,1/3], [1,1,1/3],[3,3,1]]) sample3 = np.array([[1, 1/3], [3, 1]]) sample4 = np.array([[1,3,1], [1 / 3, 1, 1/3], [1,3, 1]]) sample5=np.array([[1,3],[1/3 ,1]]) sample_all=[sample1,sample2,sample3,sample4,sample5] #第三层的全部判断矩阵 FA_mx=[goal,c_all,sample_all] A1=AHP(FA_mx) #经典层次分析法 A1.run() a=A1.CR #层次单排序的一致性比例(从下往上) b=A1.w #层次单排序的权值(从下往上) c=A1.CR_all #层次总排序的一致性比例(从上往下) d=A1.w_all #层次总排序的权值(从上往下) e=sum(d[len(d)-1],[]) #底层指标对目标层的权值 #可视化 plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False name=['D1','D2','D3','D4','D5','D6','D7','D8','D9','D10','D11','D12'] plt.figure() plt.bar(name,e) for i,j in enumerate(e): plt.text(i,j+0.005,'%.4f'%(np.abs(j)),ha='center',va='top') plt.title('底层指标对A的权值') plt.show() ''' #自调节层次分析法的3标度矩阵(求在线体系的权值) goal=[] #第一层的全部判断矩阵 goal.append(np.array([[0, 1], [-1,0]])) criteria1 = np.array([[0, 1], [-1,0]]) criteria2=np.array([[0, 0,1], [0,0,1], [-1,-1,0]]) c_all=[criteria1,criteria2] #第二层的全部判断矩阵 sample1 = np.array([[0, 0], [0, 0]]) sample2 = np.array([[0,0,-1], [0,0,-1],[1,1,0]]) sample3 = np.array([[0, -1], [1, 0]]) sample4 = np.array([[0,1,0], [-1, 0,-1], [0,1,0]]) sample5=np.array([[0,1],[-1 ,0]]) sample_all=[sample1,sample2,sample3,sample4,sample5] #第三层的全部判断矩阵 FA_mx=[goal,c_all,sample_all] A1=AHP(FA_mx,'auto') #经典层次分析法 A1.run() a=A1.CR #层次单排序的一致性比例(从下往上) b=A1.w #层次单排序的权值(从下往上) c=A1.CR_all #层次总排序的一致性比例(从上往下) d=A1.w_all #层次总排序的权值(从上往下) e=sum(d[len(d)-1],[]) #底层指标对目标层的权值 #可视化 plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False name=['D1','D2','D3','D4','D5','D6','D7','D8','D9','D10','D11','D12'] plt.figure() plt.bar(name,e) for i,j in enumerate(e): plt.text(i,j+0.005,'%.4f'%(np.abs(j)),ha='center',va='top') plt.title('底层指标对A的权值') plt.show()
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要为大家详细介绍了Python使用Pillow添加水印,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
这篇文章主要介绍了Pytorch dataloader在加载最后一个batch时卡死的解决方案,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
bytearray() 方法返回一个新字节数组。这个数组里的元素是可变的,并且每个元素的值范围: 0 <= x < 256。
这篇文章主要介绍了Python 利用for、while 实现循环最快方式,文章主要对for、while 等速度对比详细介绍,具有一定的参考价值 ,需要的小伙伴可以参考一下
通过 Python 绘制精美的地图?想在地图上自由的设置各种参数?想获得灵活的交互体验?这里就有一款Python 神包满足你:folium。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008