怎么用Python从一个概率分布进行随机采样

Admin 2022-06-20 群英技术资讯 715 次浏览

很多朋友都对“怎么用Python从一个概率分布进行随机采样”的内容比较感兴趣,对此小编整理了相关的知识分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获,那么感兴趣的朋友就继续往下看吧!


1. 二项(binomial)/伯努利(Bernoulli)分布

1.1 概率质量函数(pmf)

当n=1时,则取到下列极限情况,是为参数为p的二项分布:

二项分布P(X=x; n, p)可以表示进行独立重复试验n次,每次有两成功和失败可能结果(分别对应概率p和1−p),共成功x次的概率。

1.2 函数原型

random.binomial(n, p, size=None)

参数:

n: int or array_like of ints   对应分布函数中的参数 n,>=0,浮点数会被截断为整形。

p: float or array_like of floats   对应分布函数参数p, >=0并且<=1。

size: int or tuple of ints, optional   如果给定形状为(m,n,k),那么m×n×k个随机样本会从中抽取。默认为None,即返回一个一个标量随机样本。

返回:

out: ndarray or scalar  从带参数的概率分布中采的随机样本,每个样本表示独立重复实验n次中成功的次数。

1.3 使用样例

设进行独立重复实验10次,每次成功概率为0.5,采样样本表示总共的成功次数(相当于扔10次硬币,正面朝上的次数)。总共采20个样本。

import numpy as np
n, p = 10, .5  
s = np.random.binomial(n, p, 20)
print(s) # [4 5 6 5 4 2 4 6 7 2 4 4 2 4 4 7 6 3 5 6]

可以粗略的看到,样本几乎都在5周围上下波动。

我们来看一个有趣的例子。一家公司钻了9口井,每口井成功的概率为0.1,所有井都失败了,发生这种情况的概率是多少?

我们总共采样2000次,来看下产生0结果的概率。

s = sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
print(s) # 0.3823

可见,所有井失败的概率为0.3823,这个概率还是蛮大的。

2. 多项(multinomial)分布

2.1 概率质量函数(pmf)

当k=2时,则取到下列极限情况,是为参数为n, p的二项分布:

也就是说,多项分布式二项分布的推广:仍然是独立重复实验n次,但每次不只有成功和失败两种结果,而是k种可能的结果,每种结果的概率为pi。多项分布是一个随机向量的分布,x=(x1,x2,...,xk)意为第i种结果出现xi次,P(X=x; n, p)也就表示第i种结果出现xi次的概率。

2.2 函数原型

random.multinomial(n, pvals, size=None)

参数:

n: int   对应分布函数中的参数 n

pvals: sequence of floats   对应分布函数参数p, 其长度等于可能的结果数k,并且有0⩽pi⩽1。

size: int or tuple of ints, optional   为输出形状大小,因为采出的每个样本是一个随机向量,默认最后一维会自动加上k,如果给定形状为(m,n),那么m×n个维度为k的随机向量会从中抽取。默认为None,即返回一个一个k维的随机向量。

返回:

out: ndarray   从带参数的概率分布中采的随机向量,长度为可能的结果数k,如果没有给定 size,则shape为 (k,)

2.3 使用样例

设进行独立重复实验20次,每次情况的概率为1/6,采样出的随机向量表示每种情况出现次数(相当于扔20次六面骰子,点数为0, 1, 2, ..., 5出现的次数)。总共采1个样本。

s = np.random.multinomial(20, [1/6.]*6, size=1)
print(s) # [[4 2 2 3 5 4]]

当然,如果不指定size,它直接就会返回一个一维向量了

s = np.random.multinomial(20, [1/6.]*6)
print(s) # [4 1 4 3 5 3]

如果像进行多次采样,改变 size即可:

s = np.random.multinomial(20, [1/6.]*6, size=(2, 2))
print(s)
# [[[4 3 4 2 6 1]
#   [5 2 1 6 3 3]]

#  [[5 4 1 1 6 3]
#   [2 5 2 5 4 2]]]

这个函数在论文<sup>[1]</sup>的实现代码<sup>[2]</sup>中用来设置每一个 client分得的样本数:

for cluster_id in range(n_clusters): 
    weights = np.random.dirichlet(alpha=alpha * np.ones(n_clients))
    clients_counts[cluster_id] = np.random.multinomial(clusters_sizes[cluster_id], weights)
    # 一共扔clusters_sizes[cluster_id]次筛子,该函数返回骰子落在某个client上各多少次,也就对应着该client应该分得的样本数

3.均匀(uniform)分布

3.1 概率密度函数(pdf)

均匀分布可用于随机地从连续区间[a,b)内进行采样。

3.2 函数原型

random.uniform(low=0.0, high=1.0, size=None)

参数:

low: float or array_like of floats, optional   对应分布函数中的下界参数 a,默认为0。

high: float or array_like of floats   对应分布函数中的下界参数 b,默认为1.0。

size: int or tuple of ints, optional   为输出形状大小,如果给定形状为(m,n,k),那么m×n×k的样本会从中抽取。默认为None,即返回一个单一标量。

返回:

out: ndarray or scalar   从带参数的均匀分布中采的随机样本

3.3 使用样例

s = np.random.uniform(-1,0,10)
print(s)
# [-0.9479594  -0.86158902 -0.63754099 -0.0883407  -0.92845644 -0.11148294
#  -0.19826197 -0.77396765 -0.26809953 -0.74734785]

4. 狄利克雷(Dirichlet)分布

4.1 概率密度函数(pdf)

4.2 函数原型

random.dirichlet(alpha, size=None)

参数:

alpha: sequence of floats, length k   对应分布函数中的参数向量 α,长度为k。

size: int or tuple of ints, optional   为输出形状大小,因为采出的每个样本是一个随机向量,默认最后一维会自动加上k,如果给定形状为(m,n),那么m×n个维度为k的随机向量会从中抽取。默认为None,即返回一个一个k维的随机向量。

返回:

out: ndarray   采出的样本,大小为(size,k)。

4.3 使用样例

设α=(10,5,3)(意味着k=3),size=(2,2),则采出的样本为2×2个维度为k=3的随机向量。

s = np.random.dirichlet((10, 5, 3), size=(2, 2))
print(s)
# [[[0.82327647 0.09820451 0.07851902]
#   [0.50861077 0.4503409  0.04104833]]

#  [[0.31843167 0.22436547 0.45720285]
#   [0.40981943 0.40349597 0.1866846 ]]]

这个函数在论文[1]的实现代码[2]中用来生成符合狄利克雷分布的权重向量

for cluster_id in range(n_clusters): 
    # 为每个client生成一个权重向量,文章中分布参数alpha每一维都相同
    weights = np.random.dirichlet(alpha=alpha * np.ones(n_clients))
    clients_counts[cluster_id] = np.random.multinomial(clusters_sizes[cluster_id], weights)

以上就是关于“怎么用Python从一个概率分布进行随机采样”的介绍了,感谢各位的阅读,希望这篇文章能帮助大家解决问题。如果想要了解更多知识,欢迎关注群英网络,小编每天都会为大家更新不同的知识。 群英智防CDN,智能加速解决方案
标签: Python随机采样

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服