Python中怎么利用opencv实现医学处理
Admin 2022-06-15 群英技术资讯 344 次浏览
利用opencv
或其他工具编写程序实现医学处理。
# -*- coding: utf-8 -*- ''' 作者 : 丁毅 开发时间 : 2021/5/9 16:30 ''' import cv2 import numpy as np # 图像细化 def VThin(image, array): rows, cols = image.shape NEXT = 1 for i in range(rows): for j in range(cols): if NEXT == 0: NEXT = 1 else: M = int(image[i, j - 1]) + int(image[i, j]) + int(image[i, j + 1]) if 0 < j < cols - 1 else 1 if image[i, j] == 0 and M != 0: a = [0]*9 for k in range(3): for l in range(3): if -1 < (i - 1 + k) < rows and -1 < (j - 1 + l) < cols and image[i - 1 + k, j - 1 + l] == 255: a[k * 3 + l] = 1 sum = a[0] * 1 + a[1] * 2 + a[2] * 4 + a[3] * 8 + a[5] * 16 + a[6] * 32 + a[7] * 64 + a[8] * 128 image[i, j] = array[sum]*255 if array[sum] == 1: NEXT = 0 return image def HThin(image, array): rows, cols = image.shape NEXT = 1 for j in range(cols): for i in range(rows): if NEXT == 0: NEXT = 1 else: M = int(image[i-1, j]) + int(image[i, j]) + int(image[i+1, j]) if 0 < i < rows-1 else 1 if image[i, j] == 0 and M != 0: a = [0]*9 for k in range(3): for l in range(3): if -1 < (i-1+k) < rows and -1 < (j-1+l) < cols and image[i-1+k, j-1+l] == 255: a[k*3+l] = 1 sum = a[0]*1+a[1]*2+a[2]*4+a[3]*8+a[5]*16+a[6]*32+a[7]*64+a[8]*128 image[i, j] = array[sum]*255 if array[sum] == 1: NEXT = 0 return image array = [0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1,\ 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1,\ 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1,\ 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1,\ 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\ 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1,\ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\ 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1,\ 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1,\ 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1,\ 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,\ 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\ 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,\ 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0,\ 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0] # 显示灰度图 img = cv2.imread(r"C:\Users\pc\Desktop\vas0.png",0) cv2.imshow("img1",img) # 自适应阈值分割 img2 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 17, 4) cv2.imshow('img2', img2) # 图像反色 img3 = cv2.bitwise_not(img2) cv2.imshow("img3", img3) # 图像扩展 img4 = cv2.copyMakeBorder(img3, 1, 1, 1, 1, cv2.BORDER_REFLECT) cv2.imshow("img4", img4) contours, hierarchy = cv2.findContours(img4, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # 消除小面积 img5 = img4 for i in range(len(contours)): area = cv2.contourArea(contours[i]) if (area < 80) | (area > 10000): cv2.drawContours(img5, [contours[i]], 0, 0, -1) cv2.imshow("img5", img5) num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(img5, connectivity=8, ltype=None) # print(stats) s = sum(stats) img6 = np.ones(img5.shape, np.uint8) * 0 for (i, label) in enumerate(np.unique(labels)): # 如果是背景,忽略 if label == 0: # print("[INFO] label: 0 (background)") continue numPixels = stats[i][-1] div = (stats[i][4]) / s[4] # print(div) # 判断区域是否满足面积要求 if round(div, 3) > 0.002: color = 255 img6[labels == label] = color cv2.imshow("img6", img6) # 图像反色 img7 = cv2.bitwise_not(img6) # 图像细化 for i in range(10): VThin(img7, array) HThin(img7, array) cv2.imshow("img7",img7) # 边缘检测 img8 = cv2.Canny(img6, 80, 255) cv2.imshow("img8", img8) # 使灰度图黑白颠倒 img9 = cv2.bitwise_not(img8) cv2.imshow("img9", img9) cv2.waitKey(0)
运行结果
问题及解决方法
1.自适应阈值处理运行报错
参考链接
解决方式:
void adaptiveThreshold(InputArray src, OutputArray dst, double
maxValue, int adaptiveMethod, int thresholdType, int bolckSize, double C)
src
:InputArray
类型的src
,输入图像,填单通道,单8
位浮点类型Mat
即可。dst
:函数运算后的结果存放在这。即为输出图像(与输入图像同样的尺寸和类型)。maxValue
:预设满足条件的最大值。adaptiveMethod
自适应阈值算法。ADAPTIVE_THRESH_MEAN_C
或 ADAPTIVE_THRESH_GAUSSIAN_C
两种。thresholdType
:指定阈值类型。可选择THRESH_BINARY
或者THRESH_BINARY_INV
两种(即二进制阈值或反二进制阈值)。bolckSize
:表示邻域块大小,用来计算区域阈值,一般选择为3、5、7......
等。C
:参数C
表示与算法有关的参数,它是一个从均值或加权均值提取的常数,可以是负数。blockSize
的取值需要大于1
且为奇数。2.图像扩展
参考链接
方式:使用cv2.copyMakeBorder()
函数。
主要参数:
src
: 输入的图片。top, bottom, left, right
:相应方向上的边框宽度。borderType
:定义要添加边框的类型,详情参考链接。3.面积选择
参考链接
方式:选择满足面积80-10000
的图像输出, 去除噪声位置元素。
4.图像细化
参考链接
方式:经过一层层的剥离,从原来的图中去掉一些点,但仍要保持原来的形状,直到得到图像的骨架。骨架,可以理解为图像的中轴。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
大家好,本篇文章主要讲的是Python扑克牌21点游戏实例代码,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下,方便下次浏览
这篇文章主要介绍了python基于Pandas读写MySQL数据库,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下
如果想要充分利用,在python中大部分情况需要使用多进程,那么这个包就叫做multiprocessing。借助它,可以轻松完成从单进程到并发执行的转换。multiprocessing支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。那么本节要介绍的内容有:ProcessLockSemaphoreQueuePipePoo
内容介绍函数的返回值函数的参数不可变参数和可变参数+=函数的参数缺省参数多值参数元组和字典的拆包总结函数的返回值一个函数执行后可以返回多个返回值defmeasure():print('测量开
定义差集: A,B是两个集合,所有属于A且不属于B的元素构成的集合, 就是差集。交集: A,B是两个集合,既属于A又属于B的元素构成的集合
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008