如何用Python对敏感词过滤,方法是什么
Admin 2022-06-10 群英技术资讯 469 次浏览
关于敏感词过滤可以看成是一种文本反垃圾算法,例如
题目:敏感词文本文件 filtered_words.txt,当用户输入敏感词语,则用 星号 * 替换,例如当用户输入「北京是个好城市」,则变成「**是个好城市」
代码:
#coding=utf-8 def filterwords(x): with open(x,'r') as f: text=f.read() print text.split('\n') userinput=raw_input('myinput:') for i in text.split('\n'): if i in userinput: replace_str='*'*len(i.decode('utf-8')) word=userinput.replace(i,replace_str) return word print filterwords('filtered_words.txt')
再例如反黄系列:
开发敏感词语过滤程序,提示用户输入评论内容,如果用户输入的内容中包含特殊的字符: 敏感词列表 li = ["苍老师","东京热",”武藤兰”,”波多野结衣”] 则将用户输入的内容中的敏感词汇替换成***,并添加到一个列表中;如果用户输入的内容没有敏感词汇,则直接添加到上述的列表中。 content = input('请输入你的内容:') li = ["苍老师","东京热","武藤兰","波多野结衣"] i = 0 while i < 4: for li[i] in content: li1 = content.replace('苍老师','***') li2 = li1.replace('东京热','***') li3 = li2.replace('武藤兰','***') li4 = li3.replace('波多野结衣','***') else: pass i += 1
一道bat面试题:快速替换10亿条标题中的5万个敏感词,有哪些解决思路?
有十亿个标题,存在一个文件中,一行一个标题。有5万个敏感词,存在另一个文件。写一个程序过滤掉所有标题中的所有敏感词,保存到另一个文件中。
1、DFA过滤敏感词算法
在实现文字过滤的算法中,DFA是比较好的实现算法。DFA即Deterministic Finite Automaton,也就是确定有穷自动机。
算法核心是建立了以敏感词为基础的许多敏感词树。
python 实现DFA算法:
# -*- coding:utf-8 -*- import time time1=time.time() # DFA算法 class DFAFilter(): def __init__(self): self.keyword_chains = {} self.delimit = '\x00' def add(self, keyword): keyword = keyword.lower() chars = keyword.strip() if not chars: return level = self.keyword_chains for i in range(len(chars)): if chars[i] in level: level = level[chars[i]] else: if not isinstance(level, dict): break for j in range(i, len(chars)): level[chars[j]] = {} last_level, last_char = level, chars[j] level = level[chars[j]] last_level[last_char] = {self.delimit: 0} break if i == len(chars) - 1: level[self.delimit] = 0 def parse(self, path): with open(path,encoding='utf-8') as f: for keyword in f: self.add(str(keyword).strip()) def filter(self, message, repl="*"): message = message.lower() ret = [] start = 0 while start < len(message): level = self.keyword_chains step_ins = 0 for char in message[start:]: if char in level: step_ins += 1 if self.delimit not in level[char]: level = level[char] else: ret.append(repl * step_ins) start += step_ins - 1 break else: ret.append(message[start]) break else: ret.append(message[start]) start += 1 return ''.join(ret) if __name__ == "__main__": gfw = DFAFilter() path="F:/文本反垃圾算法/sensitive_words.txt" gfw.parse(path) text="新疆骚乱苹果新品发布会�u八" result = gfw.filter(text) print(text) print(result) time2 = time.time() print('总共耗时:' + str(time2 - time1) + 's')
运行效果:
新疆骚乱苹果新品发布会�u八 ****苹果新品发布会** 总共耗时:0.0010344982147216797s
2、AC自动机过滤敏感词算法
AC自动机:一个常见的例子就是给出n个单词,再给出一段包含m个字符的文章,让你找出有多少个单词在文章里出现过。
简单地讲,AC自动机就是字典树+kmp算法+失配指针
# -*- coding:utf-8 -*- import time time1=time.time() # AC自动机算法 class node(object): def __init__(self): self.next = {} self.fail = None self.isWord = False self.word = "" class ac_automation(object): def __init__(self): self.root = node() # 添加敏感词函数 def addword(self, word): temp_root = self.root for char in word: if char not in temp_root.next: temp_root.next[char] = node() temp_root = temp_root.next[char] temp_root.isWord = True temp_root.word = word # 失败指针函数 def make_fail(self): temp_que = [] temp_que.append(self.root) while len(temp_que) != 0: temp = temp_que.pop(0) p = None for key,value in temp.next.item(): if temp == self.root: temp.next[key].fail = self.root else: p = temp.fail while p is not None: if key in p.next: temp.next[key].fail = p.fail break p = p.fail if p is None: temp.next[key].fail = self.root temp_que.append(temp.next[key]) # 查找敏感词函数 def search(self, content): p = self.root result = [] currentposition = 0 while currentposition < len(content): word = content[currentposition] while word in p.next == False and p != self.root: p = p.fail if word in p.next: p = p.next[word] else: p = self.root if p.isWord: result.append(p.word) p = self.root currentposition += 1 return result # 加载敏感词库函数 def parse(self, path): with open(path,encoding='utf-8') as f: for keyword in f: self.addword(str(keyword).strip()) # 敏感词替换函数 def words_replace(self, text): """ :param ah: AC自动机 :param text: 文本 :return: 过滤敏感词之后的文本 """ result = list(set(self.search(text))) for x in result: m = text.replace(x, '*' * len(x)) text = m return text if __name__ == '__main__': ah = ac_automation() path='F:/文本反垃圾算法/sensitive_words.txt' ah.parse(path) text1="新疆骚乱苹果新品发布会�u八" text2=ah.words_replace(text1) print(text1) print(text2) time2 = time.time() print('总共耗时:' + str(time2 - time1) + 's')
运行结果:
新疆骚乱苹果新品发布会�u八 ****苹果新品发布会** 总共耗时:0.0010304450988769531s
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章给大家分享的是用python实现文字版购物车功能的介绍。实现需求,效果及代码如下,是比较简易的效果,对大家学习和理解购物车功能的实现有一定的价值,因此分享给大家做个参考,文中示例代码介绍的非常详细,感兴趣的朋友接下来一起跟随小编看看吧。
本文为大家整理了九个Python列表生成式的面试题(从简单到困难排序),可以帮助大家提高列表生成式的理解水平,感兴趣的小伙伴可以学习一下
内容介绍前言1.准备工作2.连接MongoDB3.指定数据库4.指定集合5.插入数据6.查询7.计数8.排序9.偏移10.更新11.删除12.其他操作前言MongoDB是由C+
这篇博客将学习如何使用霍夫圆变换在图像中找到圆圈,OpenCV使用cv2.HoughCircles()实现霍夫圆变换。内容详细,逻辑清晰,有需要的朋友可以参考,希望大家阅读完这篇文章后能有所收获,那么下面就一起来了解一下吧。
这篇文章主要介绍了如何利用Python实现层次性数据和闭包性质,文中的示例代码讲解详细,对我们学习Python有一定帮助,需要的可以了解一下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008