Python转灰度图像的方法是什么,具体怎么做

Admin 2022-06-09 群英技术资讯 388 次浏览

很多朋友都对“Python转灰度图像的方法是什么,具体怎么做”的内容比较感兴趣,对此小编整理了相关的知识分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获,那么感兴趣的朋友就继续往下看吧!

图像类型:通常我们的数字图像是彩色的3通道RGB图像,R代表红色,G代表绿色,B代表蓝色。

存储方式:通常是uint8 无符号整数,0~255,当然也有24bits 可以表示更多的颜色,虽然这样做可以提高图像对于现实世界的一个还原度,但是会增加更多的开销,因此我们通常还是用8bits

灰度图像:灰度图像在图像处理种有着非常重要的地位,一些常用的操作都会涉及到灰度图像的转换,边缘检测、二值化等这些操作之前通常都是RGB to Gray。

直接给出公式:Gray = 0.2989*R+0.5870*G+0.1140*B

#Python Opencv
#导入头文件
%matplotlib inline
import matplotlib.pyplot as plt 
import cv2
import numpy as np
 
#读取图像,opencv读取图像通道顺序为BGR
img=cv2.imread('img.path.jpg')
 
#显示图像,其中.astype(np.uint8)为了确保数据格式以免无法显示,plt显示图像需要为RGB顺序
plt.figure(figsize=(15,10))
plt.imshow(cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_BGR2RGB))
plt.show()

img=0.2989*img[:,:,2]+0.5870*img[:,:,1]+0.1140*img[:,:,0]
######
plt.figure(figsize=(15,10))
plt.imshow(img, cmap ='gray')
plt.show()

#opencv 自带函数进行转化
plt.figure(figsize=(15,10))
plt.imshow(cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_BGR2GRAY),cmap='gray')
plt.show()

img3=0.2989*img[:,:,2]+0.5870*img[:,:,1]+0.1140*img[:,:,0]
img2=cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_BGR2GRAY)
print((img3-img2).sum()/(img.shape[0]*img.shape[1]))  ###结果=-0.0072855376781315

对比下,自己用公式得到的灰度图和opencv自己函数的灰度图,其实还是不一样的,应该是计算精度上的差距


上述内容具有一定的借鉴价值,感兴趣的朋友可以参考,希望能对大家有帮助,想要了解更多"Python转灰度图像的方法是什么,具体怎么做"的内容,大家可以关注群英网络的其它相关文章。 群英智防CDN,智能加速解决方案

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服